scholarly journals Transcriptomics identifies key defense mechanisms in rice resistant to both leaf-feeding and phloem feeding herbivores

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Li ◽  
Boon Huat Cheah ◽  
Yu-Fu Fang ◽  
Yun-Hung Kuang ◽  
Shau-Ching Lin ◽  
...  

Abstract Background Outbreaks of insect pests in paddy fields cause heavy losses in global rice yield annually, a threat projected to be aggravated by ongoing climate warming. Although significant progress has been made in the screening and cloning of insect resistance genes in rice germplasm and their introgression into modern cultivars, improved rice resistance is only effective against either chewing or phloem-feeding insects. Results In this study, the results from standard and modified seedbox screening, settlement preference and honeydew excretion tests consistently showed that Qingliu, a previously known leaffolder-resistant rice variety, is also moderately resistant to brown planthopper (BPH). High-throughput RNA sequencing showed a higher number of differentially expressed genes (DEGs) at the infestation site, with 2720 DEGs in leaves vs 181 DEGs in sheaths for leaffolder herbivory and 450 DEGs in sheaths vs 212 DEGs in leaves for BPH infestation. The leaf-specific transcriptome revealed that Qingliu responds to leaffolder feeding by activating jasmonic acid biosynthesis genes and genes regulating the shikimate and phenylpropanoid pathways that are essential for the biosynthesis of salicylic acid, melatonin, flavonoids and lignin defensive compounds. The sheath-specific transcriptome revealed that Qingliu responds to BPH infestation by inducing salicylic acid-responsive genes and those controlling cellular signaling cascades. Taken together these genes could play a role in triggering defense mechanisms such as cell wall modifications and cuticular wax formation. Conclusions This study highlighted the key defensive responses of a rarely observed rice variety Qingliu that has resistance to attacks by two different feeding guilds of herbivores. The leaffolders are leaf-feeder while the BPHs are phloem feeders, consequently Qingliu is considered to have dual resistance. Although the defense responses of Qingliu to both insect pest types appear largely dissimilar, the phenylpropanoid pathway (or more specifically phenylalanine ammonia-lyase genes) could be a convergent upstream pathway. However, this possibility requires further studies. This information is valuable for breeding programs aiming to generate broad spectrum insect resistance in rice cultivars.

2015 ◽  
Vol 15 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Prem N. Sharma ◽  
Naoki Mori ◽  
Shigeo Takumi ◽  
Chiharu Nakamura

Rice productivity is greatly affected by various biotic and abiotic stresses. Insect-pests are one of the major bioticconstraints to cause significant losses in rice production. Brown planthopper (BPH), Nilaparvata lugens Stål, isthe most serious insect-pest of rice in Asia where most of the world rice is produced. Controlling insects usingchemicals is already proven detrimental not only to environment but also to human health. Integrated PestManagement (IPM) is the best approach to control insect pests. Host plant resistance is the principal componentof IPM along with biological, cultural and physical methods. Use of varietal resistance is the best option to controlBPH. Many BPH resistant rice varieties with natural BPH resistance have been developed and widely used againstBPH. However, frequent breakdown of monogenic resistance by new BPH biotypes has been a serious threat tocontrol BPH. To overcome such difficulty in the use of monogenic resistance, development of durable resistanceis needed as the sustainable means to control BPH. To develop durable resistance, pyramiding of BPH resistancegenes and quantitative trait loci (QTLs), through marker-assisted method, is needed. For this, many BPH resistancegenes and QTLs have already been identified and mapped on rice chromosomes. This article reviews identification,mapping and pyramiding toward successful cloning of BPH resistance genes/QTLs and provides the basis/guidelines to work on natural insect resistance genes using molecular markers in Nepal.DOI: http://dx.doi.org/10.3126/njst.v15i1.12032Nepal Journal of Science and TechnologyVol. 15, No.1 (2014) 145-156


2021 ◽  
Vol 25 (1) ◽  
pp. 1-22
Author(s):  
MP Ali ◽  
B Nessa ◽  
MT Khatun ◽  
MU Salam ◽  
MS Kabir

The damage caused by insect pest is the continual factor for the reduction of rice production. To date, 232 rice insect pest species are identified in Bangladesh and more than 100 species of insects are considered pests in rice production systems globally, but only about 20 - 33 species can cause significant economic loss. The major goal of this study is to explore all the possible ways of developed and proposed technologies for rice insect pests management and minimize economic losses. Insect pests cause 20% average yield loss in Asia where more than 90% of the world's rice is produced. In Bangladesh, outbreak of several insects such as rice hispa, leafroller, gallmidge, stem borers and brown planthopper (BPH) occurs as severe forms. Based on previous reports, yield loss can reach upto 62% in an outbreak situation due to hispa infestation. However, BPH can cause 44% yield loss in severe infestested field. To overcome the outbreaks in odd years and to keep the loss upto 5%, it is necessary to take some preventive measures such as planting of resistant or tolerant variety, stop insecticide spraying at early establishment of rice, establish early warning and forecasting system, avoid cultivation of susceptible variety and following crop rotation. Subsequent quick management options such as insecticidal treatment for specific insect pest should also be broadcasted through variety of information systems. Advanced genomic tool can be used to develop genetically modified insect and plants for sustainable pest management. In addition, to stipulate farmers not use insecticides at early crop stgae and minimize general annualized loss, some interventions including training rice farmers, regular field monitoring, digitalization in correct insect pests identification and their management (example; BRRI rice doctor mobile app), and demonstration in farmers field. Each technology itself solely or combination of two or more or all the packages can combat the insect pests, save natural enemies, harvest expected yield and contribute to safe food production in Bangladesh. Bangladesh Rice J. 25 (1) : 1-22, 2021


2022 ◽  
Vol 23 (2) ◽  
pp. 758
Author(s):  
Xiubing Gao ◽  
Xianfeng Hu ◽  
Feixu Mo ◽  
Yi Ding ◽  
Ming Li ◽  
...  

Using of plant essential oil that coevolved as a defense mechanism against agriculture insects is an alternative means of controlling many insect pests. In order to repel brown planthoppers (BPHs), the most notorious rice insect pest, a new film based on guar gum incorporated with citral (GC film) was formulated, which was effective while being environmentally friendly. In this paper, the effect and mechanism of GC film repellency against BPHs were determined. Repellent activity test and olfactory reaction analysis showed that GC film had repellency effect against BPHs, with repellency of 60.00% and 73.93%, respectively. The result of olfactory reaction indicated that GC film repellency against BPHs relied on smell. EPG analysis showed the proportion and mean duration of np waveform were significantly higher than in CK and increased following the treatment concentration, which indicated that GC film affected the recognition of BPHs to rice. Further analysis by RNA sequencing analysis showed a total of 679 genes were significantly upregulated and 284 genes were significantly downregulated in the BPHs fed on the rice sprayed with GC film compared to control. Odorant-binding protein (OBP) gene 797 and gustatory receptor gene (GR)/odorant receptor (OR) gene 13110 showed a significant decrease in differential expression and significant increase in differential expression, respectively. There were 0.66 and 2.55 differential expression multiples between treated BPHs and control, respectively. According to the results described above, we reasoned that GC film repellency against BPHs due to smell, by release of citral, caused the recognition difficulties for BPHs to rice, and OBP gene 797 and GR/OR gene 13110 appeared to be the crucial candidate genes for GC film repellency against BPHs. The present study depicted a clear and consistent repellency effect for GC film against BPHs and preliminarily clarified the mechanism of GC film as a repellent against BPHs, which might offer an alternative approach for control of BPHs in the near future. Our results could also help in the development and improvement of GC films.


2018 ◽  
Vol 14 (2) ◽  
pp. 75
Author(s):  
Muhamad Yunus ◽  
Diani Damayanti ◽  
Ahmad Dadang ◽  
Ahmad Warsun ◽  
Dani Satyawan ◽  
...  

<p>Brown planthopper (BPH) is a major rice pest in Indonesia. The most economical and effective approach to control the insect pest is by using resistant varieties. Exploring for resistance genes is, therefore, a prerequisite for effective breeding program for BPH resistance. This study aimed to map BPH resistance genes in Untup Rajab, an Indonesian local rice variety. Genetic map was constructed using an F2 population from a cross between TN-1 and Untup Rajab, and SNP markers from RiceLD SNP Chip. Phenotyping was performed using bulk seedling test on F2:3 seedlings against two BPH populations, i.e. X1 and S1. Four QTLs<br />were identified on chromosomes 5, 6, 8, and 11 with PVE values of 7.63%, 9.40%, 17.66%, and 3.05%, respectively. Relatively normal distribution of resistance phenotype and the relatively low PVE values indicate that Untup Rajab has a quantitative resistance to BPH with two different resistance loci identified for each BPH test population. The QTL on chromosome 8 overlaps with OsHI-LOX gene, which is associated with resistance to BPH, and adjacent to another QTL for resistance to green leafhopper. The QTL on chromosome 6 was found near OsPLDα4 and OsPLDα5 genes which are related to BPH resistance. Meanwhile, the QTL intervals on chromosome 5 and 11 did not overlap with any known BPH QTLs or genes, which make them attractive candidates for novel BPH resistance gene discovery.</p>


Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 689
Author(s):  
A. Badji ◽  
D. B. Kwemoi ◽  
L. Machida ◽  
D. Okii ◽  
N. Mwila ◽  
...  

Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology’s single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10–30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.


Author(s):  
Arfang BADJI ◽  
Daniel Bomet KWEMOI ◽  
Lewis MACHIDA ◽  
Dennis OKII ◽  
Natasha MWILA ◽  
...  

Several herbivores feed on maize in field and storage setups making the development of multiple-insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to FAW whilst bulked grains were subjected to MW bioassay, genotyped with Diversity Array Technologies single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance level of 0.05 and 0.01, respectively, and located within or close to multiple-insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple-traits of which six were associated with resistance to both FAW and MW suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10-30kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of five of the six combined-resistance QTNs, thus, reinforcing the pleiotropy hypothesis. In addition, through In-silico co-functional network inferences, an additional 107 Network-based CGs (NbCGs), biologically connected to the 64 GbCGs, differentially expressed under biotic or abiotic stress were revealed within MIRGRs. The provided multiple-insect resistance physical map should contribute to the development of combined-insect resistance in maize.


2020 ◽  
Author(s):  
Abhishek Ojha ◽  
Wenqing Zhang

AbstractInsect pests consume tastants as their necessary energy and nutrient sources. Gustatory receptors play important roles in insect life and can form within an extremely complicated regulatory network. However, there are still many gustatory genes that have a significant impact on insect physiology, but their functional mechanism is still unknown. Here, we purified and characterized a gustatory receptor (protein) coding gene, NlGr7, from the brown planthopper (BPH) Nilaparvata lugens, which is an important insect pest of rice. Our results revealed that NlGr7 has an active association with various ligands, such as lectins, lipids (phospho- and sphingolipid) and copper. The mass-spectrometry result showed that NlGr7 is a sugar receptor, and NlGr7 is validated by different types of insoluble polysaccharides and a varied range of tastants. Furthermore, we observed that NlGr7-bound ATP hydrolysed on the ATPase activity assay, which indicated that NlGr7 may be associated with important biological functions in the BPH. The important NlGr7 for chemoreception has now been characterized in the BPH. We showed that NlGr7 in the BPH is required for various protein-ligands, as well as protein-sugars interactions, to play crucial roles in this pest. This study will provide valuable information for further functional studies of chemoreception mechanisms in this important agricultural pest.


2017 ◽  
Vol 35 (4) ◽  
pp. 155
Author(s):  
I Made Tasma

<p>ABSTRACT<br />One of the main constraints on cacao cultivation is disease and insect pest attacks causing significant yield loss.  The main insect pests and diseases on cacao plantation are cacao pod borer, cacao<br />fruit rot, vascular streak dieback and cacao mirids (Helopeltis spp.). Conventional breeding method to obtain new cacao clones resistant to insect pests and diseases is a slow process. It may take 1520 years to obtain a new superior clone. Applying DNA technology should expedite cacao breeding program. The article described the application of DNA technology currently available to expedite cacao breeding program for disease and insect resistance. Many genes and quantitative trait loci (QTLs) of important traits have been discovered related to cacao plant productivity and yield quality, disease and insect pest resistance traits. Modern genomic technologies as well as DNA marker have also been applied in cacao breeding program. Genetic transformation technology has been explored its application for cacao improvement. With the development of modern genomic technology, important gene/QTL discoveries would be faster to accelerate insect pest and disease resistant cultivar development. All these new DNA technologies have been assessed their potential applications for coping important pest and disease and for yield improvement. DNA technologies, mainly MAS and genomic-data based breeding technologies are ready to be applied to support breeding programs for main pest and disease resistance to enhance Indonesian cacao productivity and quality.<br />Keywords: Cacao, disease and insect resistance, genomics, DNA markers, genetic transformation, marker-assisted breeding<br /><br /></p><p>Abstrak</p><p>Salah satu kendala utama dalam budi daya kakao ialah serangan hama dan penyakit. Hama dan penyakit utama kakao adalah penggerek buah kakao (PBK), busuk buah kakao (BBK), vascular streak dieback (VSD), dan cacao mirids (Helopeltis spp.). Kegiatan pemuliaan tanaman kakao secara konvensional berjalan lambat dan perlu waktu panjang. Untuk menghasilkan satu varietas unggul diperlukan waktu 15-20 tahun. Aplikasi teknologi DNA (genomika melalui pemuliaan berbantuan marka dan rekayasa genetik) dapat mempercepat program pemuliaan tanaman kakao. Tulisan ini mengulas teknologi DNA yang tersedia saat ini dan potensi aplikasinya untuk mempercepat pemuliaan kakao tahan hama dan penyakit. Penemuan marka DNA dan gen/quantitative trait loci (QTL) kakao berkembang cukup pesat. Banyak gen dan QTL karakter penting telah diidentifikasi yang terkait ketahanan hama dan penyakit serta produktivitas tanaman. Teknologi genomika dan pemanfaatan teknik marker-assisted selection (MAS) juga telah diaplikasikan untuk pemuliaan kakao termasuk untuk karakter ketahanan terhadap hama dan penyakit. Teknologi rekayasa genetik telah diteliti untuk menganalisis potensi pemanfaatannya dalam perbaikan bahan tanam kakao. Dengan berkembangnya teknologi genomika modern, penemuan gen/QTL unggul dapat dipercepat, lebih efisien dan komprehensif untuk mempercepat perakitan varietas unggul kakao tahan hama dan penyakit. Teknologi DNA khususnya MAS dan pemuliaan berbasis data genom siap diaplikasikan untuk mendukung program perbaikan ketahanan tanaman kakao terhadap hama dan penyakit utama dalam rangka peningkatan produktivitas dan mutu kakao nasional. <br /><br /></p>


2018 ◽  
Vol 19 (12) ◽  
pp. 4030 ◽  
Author(s):  
Satyabrata Nanda ◽  
Pin-Jun Wan ◽  
San-Yue Yuan ◽  
Feng-Xiang Lai ◽  
Wei-Xia Wang ◽  
...  

The conserved mitogen-activated protein kinase (MAPK) cascades play vital roles in plant defense responses against pathogens and insects. In the current study, the expression profiles of 17 OsMPKs were determined in the TN1 and IR56 rice varieties under the infestation of brown planthopper (BPH), one of the most destructive hemimetabolous rice pests. The virulent IR56 BPH population (IR56-BPH) and the avirulent TN1 BPH population (TN-BPH) were used to reveal the roles of OsMPKs in the compatible (IR56-BPH infested on the TN1 and IR56 rice varieties, and TN1-BPH infested on the TN1 rice variety) and the incompatible (TN1-BPH infested on the IR56 rice variety) interaction. The statistical analysis revealed that rice variety, BPH population type, and infestation period have significant effects on the transcription of OsMPKs. Out of these genes, five OsMPKs (OsMPK1, OsMPK3, OsMPK7, OsMPK14, and OsMPK16) were found to exhibit upregulated expression only during incompatible interaction. Six OsMPKs (OsMPK4, OsMPK5, OsMPK8, OsMPK9, OsMPK12, and OsMPK13) were associated with both incompatible and compatible interactions. The transcription analysis of salicylic acid, jasmonic acid, and ethylene phytohormone signaling genes revealed their roles during the rice–BPH interactions. The upregulated expression of OsC4H, OsCHS, and OsCHI in the incompatible interaction implied the potential defense regulatory roles of phenylpropanoids. In both varieties, the elevated transcript accumulations of OsGST and OsSOD, and the increased enzyme activities of POD, SOD, and GST at 1 day post-infestation (dpi), but not at 3 dpi, indicated that reactive oxygen species (ROS) signaling might be an early event in rice–BPH interactions. Furthermore, upregulated transcription of OsLecRK3 and OsLecRK4 was found only during an incompatible interaction, suggesting their involvement in the BPH resistance response in the IR56 rice variety. Lastly, based on the findings of this study, we have proposed a model of interactions of IR56 rice with TN1-BPH and IR56-BPH that depicts the resistance and susceptibility reactions, respectively.


2021 ◽  
Author(s):  
Alina Wiszniewska ◽  
Aleksandra Koźmińska ◽  
Ewa Hanus-Fajerska ◽  
Kinga Dziurka ◽  
Michał Dziurka

Abstract Aims The aim of this study was to compare the efficiency of three defense mechanisms (ionic balance, osmotic adjustment and counteracting oxidative stress) under low, moderate and high soil salinity in two related species of contrasting tolerance to salinity: the halophyte Aster tripolium and the glycophyte Aster alpinus, and to elucidate their phytohormone-mediated regulation. Methods The phytohormonal profiling was performed to asses correlations between the pool of plant growth regulators and parameters depicting ionic homeostasis, osmotic adjustment and antioxidant system. Results Defense mechanisms in both species were based on accumulation/activity of distinct compounds (Na+ and K+ ions, antioxidants), but differences among species concerned particularly soluble carbohydrates and betaines. The halophyte accumulated mannitol, uronic acids and sucrose, while the glycophyte mostly glucose and proline-betaine. The halophyte responses also correlated with changes in the content of plant growth promoting PGRs, as well as jasmonates and benzoic acid. The glycophyte responses corresponded with changes in content of abscisic acid and ethylene precursor, as well as salicylic acid. Conclusions We provided evidence that benzoic acid rather than salicylic acid is involved in salt tolerance in the halophyte and elevated SA content may enhance vulnerability to salt excess. An important element of tolerance trait is also JA-GA network that influences the intensity of defense responses. This study uncovers new aspects of internal phytohormonal regulation of plant reaction to soil salinity and enables further insight into extremophyte biology.


Sign in / Sign up

Export Citation Format

Share Document