scholarly journals Seasonal Changes in Soil Respiration Of Degraded And Non-Degraded Sites in Oak and Pine Forests of Central Himalaya

1970 ◽  
Vol 6 (6) ◽  
pp. 89-93
Author(s):  
BS Jina ◽  
CPS Bohra ◽  
YS Rawat ◽  
MD Bhatt

Present investigation deals with the seasonal changes in soil respiration of degraded and non-degraded oak and pine forests in Van Panchayat of Kumaun Himalaya. Soil temperature and soil moisture enhances soil respiration by increasing microbial activity and decomposition of organic matter. The rate of soil respiration was higher in non-degraded site of oak forest in Dhaili VP (63.9±1.6 to 363.6±5.3 mg CO2 m-2h-1), non-degraded site of pine forest (39.1±0.9 to 195.41.6 mg CO2 m-2h-1) in Guna VP, and lower in degraded pine forest in Toli VP (21.3±0.5 to 126.8±0.8 mg CO2 m-2h-1), degraded oak forest of Guna VP was (26.9±0.8 to 167.3±1.2 mg CO2 m-2h-1). Within non-degraded and degraded sites of both oak and pine forests soil respiration was positively correlated with soil temperature and soil moisture. Key words: Soil respiration; Degraded; Non-dedgraded; Van panchayat.   DOI: 10.3126/sw.v6i6.2641 Scientific World, Vol. 6, No. 6, July 2008 89-93

2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2018 ◽  
Vol 15 (7) ◽  
pp. 2007-2019 ◽  
Author(s):  
Ping Yue ◽  
Xiaoqing Cui ◽  
Yanming Gong ◽  
Kaihui Li ◽  
Keith Goulding ◽  
...  

Abstract. Soil respiration (Rs) is the most important source of carbon dioxide emissions from soil to atmosphere. However, it is unclear what the interactive response of Rs would be to environmental changes such as elevated precipitation, nitrogen (N) deposition and warming, especially in unique temperate desert ecosystems. To investigate this an in situ field experiment was conducted in the Gurbantunggut Desert, northwest China, from September 2014 to October 2016. The results showed that precipitation and N deposition significantly increased Rs, but warming decreased Rs, except in extreme precipitation events, which was mainly through its impact on the variation of soil moisture at 5 cm depth. In addition, the interactive response of Rs to combinations of the factors was much less than that of any single-factor, and the main response was a positive effect, except for the response from the interaction of increased precipitation and high N deposition (60 kg N ha−1 yr−1). Although Rs was found to show a unimodal change pattern with the variation of soil moisture, soil temperature and soil NH4+-N content, and it was significantly positively correlated to soil dissolved organic carbon (DOC) and pH, a structural equation model found that soil temperature was the most important controlling factor. Those results indicated that Rs was mainly interactively controlled by the soil multi-environmental factors and soil nutrients, and was very sensitive to elevated precipitation, N deposition and warming. However, the interactions of multiple factors largely reduced between-year variation of Rs more than any single-factor, suggesting that the carbon cycle in temperate deserts could be profoundly influenced by positive carbon–climate feedback.


2009 ◽  
Vol 6 (3) ◽  
pp. 6147-6177 ◽  
Author(s):  
F. B. Zanchi ◽  
H. R. da Rocha ◽  
H. C. de Freitas ◽  
B. Kruijt ◽  
M. J. Waterloo ◽  
...  

Abstract. Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests, although in situ measurements have only been poorly reported and the dependence of soil moisture and soil temperature also weakly understood. This work investigates the temporal variability of soil respiration using field measurements, which also included soil moisture, soil temperature and litterfall, from April 2003 to January 2004, in a southwest Brazilian tropical rainforest near Ji-Paraná, Rondônia. The experimental design deployed five automatic (static, semi-opened) soil chambers connected to an infra-red CO2 gas analyzer. The mean half-hourly soil respiration showed a large scattering from 0.6 to 18.9 μmol CO2 m−2 s−1 and the average was 8.0±3.4 μmol CO2 m−2 s−1. Soil respiration varied seasonally, being lower in the dry season and higher in the wet season, which generally responded positively to the variation of soil moisture and temperature year round. The peak was reached in the dry-to-wet season transition (September), this coincided with increasing sunlight, evapotranspiration and ecosystem productivity. Litterfall processes contributed to meet very favorable conditions for biomass decomposition in early wet season, especially the fresh litter on the forest floor accumulated during the dry season. We attempted to fit three models with the data: the exponential Q10 model, the Reichstein model, and the log-soil moisture model. The models do not contradict the scattering of observations, but poorly explain the variance of the half-hourly data, which is improved when the lag-time days averaging is longer. The observations suggested an optimum range of soil moisture, between 0.115


2014 ◽  
Vol 11 (6) ◽  
pp. 7991-8022 ◽  
Author(s):  
C.-T. Chang ◽  
S. Sabaté ◽  
D. Sperlich ◽  
S. Poblador ◽  
F. Sabater ◽  
...  

Abstract. Soil respiration (SR) is a major component of ecosystem's carbon cycle and represents the second largest CO2 flux of the terrestrial biosphere. Soil temperature is considered to be the primary control on SR whereas soil moisture as the secondary control factor. However, soil moisture can become the dominant control on SR in very wet or dry conditions. Determining the trigger that switches-on soil moisture as the primary control factor of SR will provide a deeper understanding on how SR changes under projected future increased droughts. Specific objectives of this study were (1) to investigate the seasonal variations and the relationship between SR and both soil temperature and moisture in a Mediterranean riparian forest along a groundwater level gradient; (2) to determine soil moisture thresholds at which SR is rather controlled by soil moisture than by temperature; (3) to compare SR responses under different tree species present in a Mediterranean riparian forest (Alnus, glutinosa, Populus nigra and Fraxinus excelsior). Results showed that the heterotrophic soil respiration rate, groundwater level and 30 cm integral soil moisture (SM30) decreased significantly from riverside to uphill and showed a pronounced seasonality. SR rates showed significant differences among tree species, with higher SR for P. nigra and lower SR for A. glutinosa. The lower threshold of soil moisture was 20 and 17% for heterotrophic and total SR respectively. Daily mean SR rate was positively correlated with soil temperature when soil moisture exceeded the threshold, with Q10 values ranging from 1.19 to 2.14; nevertheless, SR became decoupled from soil temperature when soil moisture dropped below these thresholds.


2019 ◽  
Vol 145 (3) ◽  
pp. 235-254
Author(s):  
Daniela F. Cusack ◽  
Daniel Ashdown ◽  
Lee H. Dietterich ◽  
Avishesh Neupane ◽  
Mark Ciochina ◽  
...  

2009 ◽  
Vol 89 (3) ◽  
pp. 343-355 ◽  
Author(s):  
M. T. Moroni ◽  
P. Q. Carter ◽  
D. A.J. Ryan

The effect of harvesting and slash piling on soil respiration, temperature and moisture was examined in a balsam fir (Abies balsamea) and a black spruce (Picea marinara) forest located in western Newfoundland, Canada, 2 mo to 2.5 yr following harvesting. Within 4 mo of harvesting, soil temperature, moisture, and soil respiration rates were affected by harvesting and slash piling. Clearcut areas without slash (CC-S) had significantly lower soil respiration rates than uncut forests (F). However, clearcut areas with slash cover (CC+S) had significantly higher soil respiration rates than CC-S. When harvested areas with and without slash were combined, harvesting decreased soil respiration in the black spruce forest but had no effect on soil respiration in the balsam fir forest. Harvesting increased soil temperatures at 10 cm, however CC+S temperatures were cooler than CC-S temperatures. Harvested areas tended to dry faster than F, although soil moisture levels at >3.5 cm were not significantly depleted. However, there was evidence of soil drying at <3.5 cm. Soil temperature (at 10 cm) at the time of measurement was most strongly correlated to rates of soil respiration. Temporal variability and treatment effects (harvesting and slash piling) played a minor role in explaining soil respiration rates when variations in soil respiration were adjusted for 10-cm soil temperature,. Soil moisture levels (3.5-9.5 cm depth), which did not vary widely, also played a minor role in explaining soil respiration rates.Key words: Clearcut, Abies balsamea, Picea marinara, carbon dioxide, greenhouse gas


Soil Research ◽  
2008 ◽  
Vol 46 (8) ◽  
pp. 727 ◽  
Author(s):  
XiaoGuo Wang ◽  
Bo Zhu ◽  
MeiRong Gao ◽  
YanQiang Wang ◽  
XunHua Zheng

CO2 emissions from soils were measured under 3 land-use types at the adjacent plots of forest plantation, grassland, and cropland from January 2005 to December 2006. Mean soil CO2 efflux rates measured during the 2-year study varied from 59 to 527 mg CO2/m2.h in forest plantation, 37 to 498 mg CO2/m2.h in grassland, and 32 to 397 mg CO2/m2.h in cropland. Soil respiration in the 3 types of land-use showed a similar seasonal pattern in variation during both years, in which the single-peaked curve occurred in early summer and the minimum in winter. In particular, the date of maximum soil CO2 efflux rate in cropland occurred about 30 days earlier than in forest and grassland in both 2005 and 2006. The relationship of soil respiration rate (R) with soil temperature (T ) and soil moisture (W ) fitted well to the equation R = β0eβ1TW β2 (a, b, c were constants) than other univariate models which consider soil water content or soil temperature alone. Soil temperature and soil moisture together explained 69–92% of the temporal variation in soil respiration in the 3 land-use types. Temperature sensitivity of soil respiration (Q10) was affected positively by soil moisture of top 0.1 m layer and negatively by soil temperature at 0.05 m depth. The relationship between Q10 values and soil temperature (T ) or soil moisture (W ) indicated that a 1°C increase in soil temperature at 0.05 m depth will reduce the Q10 value by 0.07, 0.05, and 0.06 in forest, grassland, and cropland, respectively. Similarly, a 1% decrease in soil moisture of the top 0.1 m layer will reduce the Q10 value by 0.10, 0.09, and 0.11 in forest, grassland, and cropland.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5747 ◽  
Author(s):  
Yuli Liu ◽  
Guomo Zhou ◽  
Huaqiang Du ◽  
Frank Berninger ◽  
Fangjie Mao ◽  
...  

Moso bamboo has large potential to alleviate global warming through carbon sequestration. Since soil respiration (Rs) is a major source of CO2 emissions, we analyzed the dynamics of soil respiration (Rs) and its relation to environmental factors in a Moso bamboo (Phllostachys heterocycla cv. pubescens) forest to identify the relative importance of biotic and abiotic drivers of respiration. Annual average Rs was 44.07 t CO2 ha−1 a−1. Rs correlated significantly with soil temperature (P < 0.01), which explained 69.7% of the variation in Rs at a diurnal scale. Soil moisture was correlated significantly with Rs on a daily scale except not during winter, indicating it affected Rs. A model including both soil temperature and soil moisture explained 93.6% of seasonal variations in Rs. The relationship between Rs and soil temperature during a day showed a clear hysteresis. Rs was significantly and positively (P < 0.01) related to gross ecosystem productivity and leaf area index, demonstrating the significance of biotic factors as crucial drivers of Rs.


Sign in / Sign up

Export Citation Format

Share Document