scholarly journals Measurements of soil respiration and simple models dependent on moisture and temperature for an Amazonian southwest tropical forest

2009 ◽  
Vol 6 (3) ◽  
pp. 6147-6177 ◽  
Author(s):  
F. B. Zanchi ◽  
H. R. da Rocha ◽  
H. C. de Freitas ◽  
B. Kruijt ◽  
M. J. Waterloo ◽  
...  

Abstract. Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests, although in situ measurements have only been poorly reported and the dependence of soil moisture and soil temperature also weakly understood. This work investigates the temporal variability of soil respiration using field measurements, which also included soil moisture, soil temperature and litterfall, from April 2003 to January 2004, in a southwest Brazilian tropical rainforest near Ji-Paraná, Rondônia. The experimental design deployed five automatic (static, semi-opened) soil chambers connected to an infra-red CO2 gas analyzer. The mean half-hourly soil respiration showed a large scattering from 0.6 to 18.9 μmol CO2 m−2 s−1 and the average was 8.0±3.4 μmol CO2 m−2 s−1. Soil respiration varied seasonally, being lower in the dry season and higher in the wet season, which generally responded positively to the variation of soil moisture and temperature year round. The peak was reached in the dry-to-wet season transition (September), this coincided with increasing sunlight, evapotranspiration and ecosystem productivity. Litterfall processes contributed to meet very favorable conditions for biomass decomposition in early wet season, especially the fresh litter on the forest floor accumulated during the dry season. We attempted to fit three models with the data: the exponential Q10 model, the Reichstein model, and the log-soil moisture model. The models do not contradict the scattering of observations, but poorly explain the variance of the half-hourly data, which is improved when the lag-time days averaging is longer. The observations suggested an optimum range of soil moisture, between 0.115

2002 ◽  
Vol 2 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Humberto R. da Rocha ◽  
Helber C. Freitas ◽  
Rafael Rosolem ◽  
Robinson I.N. Juárez ◽  
Rafael N. Tannus ◽  
...  

The technique of eddy correlation was used to measure the net ecosystem exchange over a woodland savanna (Cerrado Sensu stricto) site (Gleba Pé de Gigante) in southeast Brazil. The data set included measurements of climatological variables and soil respiration using static soil chambers. Data were collected during the period from 10 October 2000 to 30 March 2002. Measured soil respiration showed average values of 4.8 molCO2 m-2s-1 year round. Its seasonal differences varied from 2 to 8 molCO2 m-2s-1 (Q10 = 4.9) during the dry (April to August) and wet season, respectively, and was concurrent with soil temperature and moisture variability. The net ecosystem CO2 flux (NEE) variability is controlled by solar radiation, temperature and air humidity on diel course. Seasonally, soil moisture plays a strong role by inducing litterfall, reducing canopy photosynthetic activity and soil respiration. The net sign of NEE is negative (sink) in the wet season and early dry season, with rates around -25 kgC ha-1day-1, and values as low as 40 kgC ha-1day-1. NEE was positive (source) during most of the dry season, and changed into negative at the onset of rainy season. At critical times of soil moisture stress during the late dry season, the ecosystem experienced photosynthesis during daytime, although the net sign is positive (emission). Concurrent with dry season, the values appeared progressively positive from 5 to as much as 50 kgC ha-1day-1. The annual NEE sum appeared to be nearly in balance, or more exactly a small sink, equal to 0.1 0.3 tC ha-1yr-1, which we regard possibly as a realistic one, giving the constraining conditions imposed to the turbulent flux calculation, and favourable hypothesis of succession stages, climatic variability and CO2 fertilization.


1959 ◽  
Vol 50 (2) ◽  
pp. 333-353 ◽  
Author(s):  
P. Symmons ◽  
A. J. M. Carnegie

Observations were made on the red locust, Nomadacris septemfasciata (Serv.), between October 1957 and February 1958 in an area of grassland, six miles long by one mile wide, marked out by beacons and divided lengthwise by a line of beacons down the centre, in the Rukwa Valley of south-west Tanganyika.One half of the plot had been burnt off completely in the latter part of the dry season; the other half was unburnt and carried in part a four-year accumulation of growth and in part an area of standing grass that had regenerated after a damaging fire during the previous wet season and then, for the most part, flooded. Vegetation profiles were made along the whole length of the plot, and rain gauges, soil thermometers and soil tensiometers were installed at regular intervals along the three lines of beacons. Assessments of the population and distribution of adult locusts within the plot were made from Land-Rover or on foot in mid-October, mid-December (ten days after the onset of the rains) and early in January. A systematic search was made for egg-pods, starting at the end of December, along furrows ploughed down the middle of each of a number of narrow strips mown in the grass in sets near each beacon and sampling equally the burnt and unburnt halves of the plot. The first hoppers were seen on 3rd January, and assessments of hopper populations were carried out four times during January.The primary object of the work was to study the effect on choice of oviposition site and on incubation success of the type and condition of the grassland (whether burnt during the previous dry season, at an earlier date, or left unburnt) and its possible bearing on control of the species in an outbreak area. Data were also obtained on the conditions of air temperature, soil moisture, soil temperature and rainfall in which eggs are laid and incubated; and the effect of variations in these factors on oviposition and on incubation success was examined.It was observed that, in the hot, dry conditions of mid-October, adult locusts were completely absent, from the recently burnt-over ground, and were found almost exclusively in that part of the standing grass that had suffered a wet-season burn. By mid-December, the locusts had spread out from the unburnt into the burnt-over zone, where the grass had put out fresh growth, but many were still to be found hi the former, with a concentration along the line of contact with the latter. By early January, the size of the population had been greatly reduced and it was evenly distributed over the whole plot.The distribution of egg-pods snowed that the locusts had laid almost exclusively in the burnt-over zone, about 50 per cent. being found within 0·1 mile of the line of contact with the unburnt zone.The hoppers were likewise almost exclusively confined to the burnt-over zone, and with numbers significantly higher in the ¼-mile band next to the contact line than in the band at ¼–½ mile from it. The numbers of hoppers in the unburnt grass was significantly lower than might have been expected from the results of the egg-pod survey, suggesting that survival was lower there than under fresh grass following a dry-season fire. A subsidiary experiment, in which adult locusts were confined in cages placed on the lately burnt-over zone, the early-burnt and unburnt areas, respectively, suggested that, where there was no choice of oviposition site, the greatest number of surviving egg-pods occurred in the first zone, almost as many in the second and about half as many in the third.During the incubation period, the soil under the unburnt grass was significantly colder, and tended to be moister, to moisten more slowly and to dry out less rapidly than that which had been burnt over. No significant correlation was found between incubation success in the burnt-over zone and total rainfall, mean recorded soil temperature or soil moisture.It is concluded that, since these observations show that, for oviposition, adults of N. fasciata exhibit a very significant preference for ground that has been burnt over in the previous dry season, the burning of selected strips should lead to the concentration of oviposition and, consequently, of hoppers, thus making chemical control of the latter easier and cheaper.There was some evidence, also, that when locusts could not move to bare ground, either oviposition or egg-pod survival (or both) were least successful where the grass cover was thickest.


2012 ◽  
Vol 9 (11) ◽  
pp. 15667-15698
Author(s):  
H. Jiang ◽  
Q. Deng ◽  
G. Zhou ◽  
D. Hui ◽  
D. Zhang ◽  
...  

Abstract. Both long-term observation data and model simulations suggest an increasing chance of serious drought in the dry season and extreme flood in the wet season in Southern China, yet little is known about how changes in precipitation pattern will affect soil respiration in the region. We conducted a field experiment to study the responses of soil respiration to precipitation manipulations – precipitation exclusion to mimic drought, double precipitation to simulate flood, and ambient precipitation (Abbr. EP, DP and AP, respectively) – in three subtropical forests in Southern China. The three forests include Masson pine forest (PF), coniferous and broadleaved mixed forest (MF) and monsoon evergreen broadleaved forest (BF). Our observations showed that altered precipitation can strongly influence soil respiration, not only through the well-known direct effects of soil moisture, but also by modification on both moisture and temperature sensitivity of soil respiration. In the dry season, soil respiration and its temperature sensitivity in the three forests showed rising trends with precipitation increase, and its moisture sensitivity showed an opposite trend. In the wet season, the EP treatment also decreased soil respiration and its temperature sensitivity, and enhanced moisture sensitivity in all three forests. Soil respiration under the DP treatment increased significantly in the PF only, and no significant change was found for either moisture or temperature sensitivity. However, the DP treatment in the MF and BF reduced temperature sensitivity significantly. Our results indicated that soil respiration would decrease in the three subtropical forests if soil moisture continues to decrease in the future. More rainfall in the wet season could have limited effect on the response of soil respiration to the rising of temperature in the BF and MF.


2009 ◽  
Vol 25 (5) ◽  
pp. 531-539 ◽  
Author(s):  
Minaco Adachi ◽  
Atsushi Ishida ◽  
Sarayudh Bunyavejchewin ◽  
Toshinori Okuda ◽  
Hiroshi Koizumi

Abstract:Spatial and seasonal variation in soil respiration rates were investigated in a tropical dry forest in Thailand. The spatial variation was examined at 50 points within a 2-ha plot in the forest floor during the dry and wet seasons. The seasonal and diurnal variations in soil respiration were measured at 16 and 5 points, respectively. The mean soil respiration rate during the wet season was 1041 ± 542 mg CO2 m−2 h−1 (mean ± SD), which is about twice that during the dry season. Soil respiration rate was negatively correlated with soil water content during the wet season. A polynomial equation using seasonal data describes soil respiration and water content: soil respiration rate increased with soil water content, but started to drop when soil water content exceeded 21%. The diurnal variation in soil respiration rate during the wet season was positively correlated with soil temperature, whereas during the wet season it was not correlated with soil temperature. The diurnal variation in soil respiration rate during the dry season showed a midday depression. The estimation of soil carbon flux with polynomial equations should incorporate different functions for the wet and dry seasons in tropical dry forests.


2018 ◽  
Vol 40 (2) ◽  
pp. 153 ◽  
Author(s):  
Xuexia Wang ◽  
Yali Chen ◽  
Yulong Yan ◽  
Zhiqiang Wan ◽  
Ran Chao ◽  
...  

The response of soil respiration to simulated climatic warming and increased precipitation was evaluated on the arid–semi-arid Stipa steppe of Inner Mongolia. Soil respiration rate had a single peak during the growing season, reaching a maximum in July under all treatments. Soil temperature, soil moisture and their interaction influenced the soil respiration rate. Relative to the control, warming alone reduced the soil respiration rate by 15.6 ± 7.0%, whereas increased precipitation alone increased the soil respiration rate by 52.6 ± 42.1%. The combination of warming and increased precipitation increased the soil respiration rate by 22.4 ± 11.2%. When temperature was increased, soil respiration rate was more sensitive to soil moisture than to soil temperature, although the reverse applied when precipitation was increased. Under the experimental precipitation (20% above natural rainfall) applied in the experiment, soil moisture was the primary factor limiting soil respiration, but soil temperature may become limiting under higher soil moisture levels.


Soil Research ◽  
2009 ◽  
Vol 47 (2) ◽  
pp. 198 ◽  
Author(s):  
Shutao Chen ◽  
Yao Huang

Studies on the CO2 and N2O emission patterns of agricultural soils under different ploughing practices may provide an insight into the potential and magnitude of CO2 and N2O mitigation in highly managed farmland soils. In this study, field measurements of soil respiration and N2O flux with different ploughing depths were performed in the 2003–04 wheat (Triticum aestivum L.), 2004 maize (Zea mays L.), and 2004–05 wheat seasons. Soil temperature and moisture were simultaneously measured. Results showed that, in each cropping season, the seasonal variation in soil respiration developed with a similar pattern for different treatments, which was primarily regulated by soil temperature. This work demonstrates that ploughing depth can influence long-term loss of carbon from soil, but this was contingent on preceding cropping types. Given the same preceding cropping practice, no significant difference in N2O emission was found among different ploughing depths in each cropping season.


2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


Author(s):  
Adekunle Titus Adediji ◽  
Joseph Babatunde Dada ◽  
Moses Oludare Ajewole

In this study, four years in-situ measurements of atmospheric parameters (pressure, temperature and relative humidity) were carried out. The measurement was by placing an automatic weather station at five different heights: ground surface, 50, 100, 150 and 200 m respectively on a 220 m Nigeria Television Authority TV tower in Akure, South Western Nigeria. The four years Data collected (January 2007 to December 2009 and January to December 2011) were used to compute radio refractivity and its gradient. The local effect of a location/ region cannot but looked into when designing effective radio link, hence the diurnal, seasonal and annual variations of the radio refractivity gradient were studied. Results showed that refractivity gradient steadily increases inthe hour of 8:30 and 9:30 to 18:00 during dry season throughout the years investigated, and decreases two hours in the rainy season than the dry season. The record shows that at 50 m altitude, the maximum and minimum values are 158 N-unit/km around 14:30 and - 286 N-unit/km around 13:30 to 14:00 hrs, LT during the dry and rainy season respectively. Seasonally, refractivity gradient is steeper with greater variability in the dry season months than in the wet season months.


Sign in / Sign up

Export Citation Format

Share Document