scholarly journals MULTIVARIATE STATISTICAL TECHNIQUES OF WATER QUALITY IN TIGRIS RIVER WITHIN BAGHDAD CITY

2021 ◽  
Vol 25 (3) ◽  
pp. 81-96
Author(s):  
Noor Q. Ahmed ◽  
Karim R. Gubashi

This study was conducted to assess the water quality of Tigris River within Baghdad city by using Weighted Arithmetic model. The studay area included five sites: Thiraa-Tigris (S1), Al-Muthana bridge (S2), Al-Shuhadaa bridge (S3), Al-Doraa (S4) and confluence point of the Diyala river (S5). Ten water quality parameters were used in this study, Total Hardness (TH), Calcium (Ca), Hydrogen Ion concentration (pH), Chloride (Cl), Magnesium (Mg), Nitrate (NO3), Sodium (Na), Boron (B), Turbidity (TUR) and Sulfate (SO4). Statistical analysis such as correlation and regression coefficient using the statistical program SPSS was used to evaluate the results of the water quality index as well as to find a relationship between the water quality index and the variables. Several statistical methods, Factor Analysis (FA), Principal Component Analysis (PCA), Discriminant Analysis (DA), and Time Series Analysis assess parameters affecting water quality during the study period (August-December) 2019. The results showed Poor to Unsuitable quality index in Tigris River at Baghdad city except for Al-Muthna Bridge (S2) was grade good quality index during the time. From the analysis, that the worst water quality index was found at confluence place of Diyala River (S5) and grade unsuitable quality index.

Hydrology ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 67 ◽  
Author(s):  
Salam Hussein Ewaid ◽  
Salwan Ali Abed ◽  
Nadhir Al-Ansari ◽  
Riyadh M. Salih

Water quality evaluation is fundamental for water resources management. Water quality index (WQI) is an accurate and easily understandable method for assessing water quality for different purposes. In this study, the Iraqi water quality index (Iraq WQI) was constructed to be used to evaluate the Iraqi rivers for drinking. For this purpose, some statistical techniques, experts’ advice, literature reviews, and authors’ experience were used. First, the principal component analysis (PCA) method and the modified Delphi method were used to select the most influential water quality parameters and their relative weights. Second, the quality curves of selected parameters were drawn to calculate the WQI scores basing on the water quality standards. Of twenty-seven parameters, six parameters were chosen to be within the index depending on their effect on water quality in order to reflect the specific characteristics of the Iraqi waters. The Iraq WQI was applied to the Tigris River within Baghdad as a case study and for some sites on other Iraqi rivers, and gave acceptable results. Results revealed that the statistical techniques used in this paper can be applied in all Iraqi rivers considering their specific characteristics. Based on the reliability of the Iraq WQI, there is no longer a need to use Indices designed for water for other countries.


2018 ◽  
Vol 162 ◽  
pp. 05001
Author(s):  
Nawar Al-Musawi

Diyala River is a tributary of Tigris River, it is one of the important rivers in Iraq. It covers a total distance of 445 km (275 miles). 32600 km2 is the area that drains by Diyala River between Iraqi-Iranian borders. This research aims to evaluate the water quality index WQI of Diyala River, where three stations were chosen along the river. These stations are D12 at Jalawlaa City at the beginning of Diyala River, the second station is D15 at Baaquba City at the mid distance of the river, and the third station is D17 which is the last station before the confluence of Diyala River with Tigris River at Baghdad city. Bhargava method was used in order to evaluate the water quality index for both irrigation and drinking uses. The results indicated that Diyala river water quality at its beginning was excellent for irrigation and good for drinking, while at the mid distance of the river, it was good for irrigation but heavily polluted and unsafe for drinking. Water quality of the river at the third site was acceptable for irrigation but again severely polluted and unsafe for drinking.


2016 ◽  
Vol 11 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Gopal Krishan ◽  
C. P. Kumar ◽  
B.K. Purandara ◽  
Surjeet Singh ◽  
N. C Ghosh ◽  
...  

A water quality index (WQI) is a tool which numerically summarizes the information from multiple water quality parameters into a single value and this information can be used to assess spatial and temporal variations in overall water quality. However, these indices are time and region specific and may be influenced by local factors. In the present study, water quality index has been worked out to assess the spatial and temporal variation of groundwater quality status for future planning and management of North Goa. Data of 19 groundwater samples were collected in the year 2005 during January, March and April, are used for the analysis. The Water Quality Index has been computed using four parameters viz. pH, Total Dissolved Solids, Total Hardness and Chloride. The WQI results show that the overall water quality class is ‘good’ and water is acceptable for domestic use.


2021 ◽  
Vol 13 (3) ◽  
pp. 913-922
Author(s):  
Kate Isioma Iloba ◽  
Nelson Owese Akawo ◽  
Perry Irouoghene Godwin

The weighted arithmetic water quality index method was used to assess the water quality of anthropogenically-laden Anwai-river within the Asaba-capital territory of Delta State, Nigeria, in Stations 1(Otulu), 2(Isele- asagba) and 3(Anwai-Asaba) using pH, electrical conductivity (EC), total dissolved solids (TDS), biochemical oxygen demand (BOD), dissolved oxygen (DO), turbidity, phosphates, nitrates, total hardness (TH) and coliforms, to determine its water quality status and its suitability for humans and aquatic biota. Aside from TDS, turbidity, and TH, other parameters such as pH (5.3-8.2), DO (2.0-2.8 mg/L), BOD (1.02-2.4 mg/L), EC (110-113 µS/cm), turbidity(2.3-5.2 NTU), TDS (8.0-16.0 mg/L), TH (30-62 mg/L), phosphates (0.13-0.28 mg/L), nitrates (0.05-0.27 mg/L) and Coliform (25.75-45.5 cfu/ml) indicated non-significant variableness (p>0.05) between Stations. Water depth, TDS, turbidity, TH, phosphate, nitrate and total coliform were significant contributors to the Anwai-river's water quality by Principal component analysis (PCA). The first principal component (PC1) exhibited 94.1% variance and a 0.1860 loading factor, while the second showed 5.9% variance and 0.0117 loading factor implying depth, flooding, excessive human activities and sewage disposal as important contaminants. Although the individual physiochemical-based water qualities were below the WHO recommended drinking water values translated into poor water quality by the weighted arithmetic water quality index at the three Stations; 86.83, 75.02 and 81.27 in Station's 1, 2 and 3 respectively, correspondingly poor to very poor based on Water quality index. The water of Anwai-river is a serious health threat to humans and aquatic organisms and thus, it should not be utilized untreated.


2010 ◽  
Vol 61 (8) ◽  
pp. 1987-1994 ◽  
Author(s):  
A. M. Jinturkar ◽  
S. S. Deshmukh ◽  
S. V. Agarkar ◽  
G. R. Chavhan

The paper proposes fuzzy logic model that deals with the physico-chemical water analysis of ground water of Chikhli town for determination of Water Quality Index (WQI). The study was carried by collection of ground water samples from about eleven hand pumps located in this town. Ground water quality is studied by systematic collection and analysis of samples. The fuzzy logic is used for the deciding the water quality index on the basis of which, water quality rankings are given to determine the quality of water. The Water Quality Index presented here is a unitless number ranging from 1 to 10. A higher number is indicative of better water quality. Around 81% of samples were found suitable for drinking purpose. It is also observed that all the parameters fall within the permissible limits laid by WHO, ISI, and ICMR, except Total Hardness, Calcium and Magnesium. The quality parameters were compared with standards laid by the World Health Organization (WHO), Indian Standards Institute (ISI) and Indian Council of Medical Research (ICMR) for drinking water quality.


Author(s):  
Runit Isaac ◽  
Shaziya Siddiqui

Abstract In this research, Water Quality Index and Multivariate Statistics Techniques was carried out on fourteen water quality parameters collected quarterly (four times/year) from nine water sources in Agra, Uttar Pradesh, India for one year (May 2019- April 2020). The Water Quality Parameters (WQP) included are the concentration of hydrogen ion (pH), Electrical conductivity, Turbidity, Total dissolved solids (TDS), Total Hardness, Total Alkalinity, Calcium, Sulphate, Chloride, Magnesium, Iron, COD, DO, and BOD. The Water sample collected shows that the mean values of physicochemical parameters are in the range of WHO and BIS except for Hardness in summer (1,680 mg/L); monsoon (832.22 mg/L); winter (1,876.66 mg/L); spring (1,535.55 mg/L), TDS in summer (1,000.33 mg/L); monsoon (683.44 mg/L); winter (1,087.66 mg/L); spring (776.66 mg/L) and sulphate (927.22 mg/L); monsoon (446.77 mg/L); winter (925.77 mg/L); spring (944.88 mg/L) which indicate the bad quality of water. The WQI values were calculated for three locations at different weather conditions. WQI values in summer, winter and spring are 630.90, 279.61, 279.91 shows that river water is not suitable for drinking purpose whereas the WQI value in monsoon is 75.89 shows that water is fit for drinking purposes due to the dilution of river water. A moderate positive correlation was observed for turbidity with total hardness, iron, total alkalinity, and sulphate. Negative Correlation was observed with pH. Moderate Correlation was seen with TDS-EC (0.608), TDS-Alkalinity (0.7794), EC-Ca (0.723) and strong was observed for BOD-DO (0.941) and Ca-Mg (0.999). Principal Component Analysis revealed that five factors were significant (eigen value > 0.5) with total variance of 39.43%–85.19% respectively. The ICP-MS study of water sample from point source indicate the presence of Ni2+, Cr6+, Co2+, Mn2+, Cu2+, Zn2+ ions at higher concentrations.


2014 ◽  
Vol 3 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Hiren B Soni ◽  
Sheju Thomas

The present study involved the determination of surface water quality index of tropical sacred wetland viz. Dakor Pilgrimage Wetland (DPW), Central Gujarat, India. The main aim of the study was to evaluate various water quality parameters to draw-out the water quality index for an assessment of a tropical aquatic body. The monthly values of pH, Dissolved Oxygen (DO), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Total alkalinity (TA), Total Hardness (TH), Calcium Hardness (Ca), Magnesium Hardness (Mg), Chloride, Sulphate, Phosphate, Sodium, and Potassium, were analyzed to compute water quality index (WQI). The results manifest that WQI at site 1 (D1) was maximum (161.74), followed by D2 (159.96), and minimum at site 3 (D3) (157.19). The values clearly depicts that quality of water is completely unfit for human consumption unless and until strict and mandatory steps are taken to rejuvenate it. The suggestive measures to improve the overall health of an aquatic body is also discussed herewith alongwith conservation measures and management strategies. DOI: http://dx.doi.org/10.3126/ije.v3i1.9952 International Journal of Environment Vol.3(1) 2014: 168-176


2021 ◽  
Vol 18 (2) ◽  
pp. 27-36
Author(s):  
Biplab Roy ◽  
Ajay Kumar Manna

The present investigation provides a better interpretation of surface water (rivers, ponds, bills, lakes, etc.) quality utilising entropy weighted water quality index (EWWQI) and different multivariate statistical techniques. Eleven physicochemical parameters including alkalinity, dissolved oxygen (DO), pH, total dissolved solids (TDS), electrical conductivity (EC), calcium (Ca), turbidity, magnesium (Mg), total hardness (TH), chloride (Cl-), and iron (Fe) were analysed and monitored at 23 sampling sites (in December 2018) of West Tripura district. Experimental outcomes of turbidity followed by Fe contamination exceeded recommended WHO standard limit. The maximum values of Fe and turbidity were estimated as 8.745 mg/L and 797.7 NTU, respectively. WQI values confirmed that most of the monitoring locations had poor water quality except three reported areas (S7, S14, and S15) but without Fe and turbidity, estimated WQI confirmed drinkable water condition for entire samples. Multivariate statistical approaches like correlation analysis, principal component analysis (PCA) and cluster analysis (CA) were applied to explore water quality. PCA outcomes recognised three principal factors explaining almost 85% of the total variance. CA investigated three major clusters of 23 sampling sites namely less polluted, highly polluted and moderately polluted zone. Confirming all above, the surface water at the monitoring locations is a major concern which may lead to serious health issues in local people.


Sign in / Sign up

Export Citation Format

Share Document