An evaluation of the physical and chemical properties of high-calcium fly ashes in Iowa

1990 ◽  
Author(s):  
Scott Michael Schlorholtz
1987 ◽  
Vol 113 ◽  
Author(s):  
Scott Schlorholtz ◽  
Ken Bergeson ◽  
Turgut Demirel

ABSTRACTThe physical and chemical properties of fly ash produced at Ottumwa Generating Station have been monitored since April, 1985. The fly ash is produced from burning a low sulfur, sub-bituminous coal obtained from the Powder River Basin near Gillette, Wyoming. One-hundred and sixty samples of fly ash were obtained during the two year period. All of the samples were subjected to physical testing as specified by ASTM C 311. About one-hundred of the samples were also subjected to a series of tests designed to monitor the self-cementing properties of the fly ash. Many of the fly ash samples were subjected to x-ray diffraction and fluorescence analysis to define the mineralogical and chemical composition of the bulk fly ash as a function of sampling date. Hydration products in selected hardened fly ash pastes, were studied by x-ray diffraction and scanning electron microscopy. The studies indicated that power plant operating conditions influenced the compressive strength of the fly ash paste specimens. Mineralogical and morphological studies of the fly ash pastes indicated that stratlingite formation occurred in the highstrength specimens, while ettringite was the major hydration product evident in the low-strength specimens.


1987 ◽  
Vol 113 ◽  
Author(s):  
F. Sybertz

ABSTRACTIn an experimental program, the suitability of various methods for testing the pozzolanic activity of fly ash was investigated. The research was conducted on virtually all fly ashes approved as concrete additives in Germany. This paper discusses differences in the particle size distribution and the solubility on dissolution with hydrochloric acid and potassium hydroxide of the fly ashes. It also reports on interrelationships between the physical and chemical properties of the fly ashes and the workability and strength of mortars containing fly ash.


Author(s):  
Anil Misra

Coal-burning utilities using subbituminous coal from Wyoming typically produce fly ash, which, because of its high calcium oxide content, may be classified as Class C fly ash. These ashes are characterized by their self-cementing property and therefore can be used for soil improvement. Stabilization characteristics of clay soils blended with Class C fly ash were evaluated. Because fly ash is a by-product, uniformity of its physical and chemical properties is significant for quality control. The statistical characteristics of fly ash physical and chemical properties are obtained and compared with the data in literature. Fly ash is blended with several different clay soils of varying plasticity to study moisture-density relationships and strength behavior of stabilized soils. It is observed that the fly ash used in these experiments has a rapid hydration characteristic. Consequently, higher densities and strengths are achieved when the compaction is performed with little or no delay after the addition of moisture to clay-fly ash blends. Conversely, delayed compaction produces low densities and strength. In addition, it is observed that the stabilization characteristics are closely related to the soil mineral type and plasticity. Results also are presented for strength gain behavior with curing period for the various soil-fly ash blends.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Arif Ali Baig Moghal

In order to explore the possibility of using low-lime fly ashes, the physical and chemical properties which have a direct bearing on their geotechnical and geoenvironmental behaviors have been investigated. In this paper, two types of low-lime fly ashes, originating from India, have been used. A brief account of various methods adopted in characterizing their physical, chemical, and geotechnical properties is presented. The relative importance of each of these properties in enhancing the bulk applicability of fly ashes has been brought out.


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document