scholarly journals Numerical Simulation on The Onion Dryer Frame Capacity of 5 kg/hour

Author(s):  
Zulfikar Zulfikar

<h1>Typical technology for processing red onion affects the quality of red onion produced. The process of drying red onion is one of the important factors in producing the best quality of red onion. Environmentally friendly and easy operation and maintenance technology is the desired technology. In the process of engine design, the strength of the material and structure are the main factors of the building of the machine. Calculation with finite element method (FEM) is the best choice to obtain information on stress distribution on a machine structure. In this study, the calculation of the FEM method was assisted by Ansys APDL 15.0 software. The objectives of this study were: (1) calculation of the load on the tray structure, (2) the distribution of stress on the tray structure, seat, and frame for red onion dryers, and (3) analyzing the strength of the material using the Tresca and Energy Distortion methods. The input load comes from the weight of the tray and red onion. The analytical method used is the finite element method with the type of structural analysis and Beam 3Node 189 element type. Based on the FEM simulation results, the maximum stress that occurs in the tray is 1.22 MPa and the maximum deflection is 0.0055 mm. The maximum stress in the tray support structure is 33.25 MPa and the maximum deflection is 0.014 mm. The maximum stress on the frame structure of the onion drying machine is 0.89 MPa and the maximum deflection is 0.000235 mm which occurs in the middle of the machine structure. Using the Tresca and Distortion Energy theories, it is found that the stresses that occur are still far from the failure criteria for all structures. Likewise, the deflection that occurs is very small so that the construction of the onion drying machine is safe to use.</h1>

Author(s):  
Azwir Sofyan ◽  
Jean Glusevic ◽  
Achmad Jusuf Zulfikar ◽  
Bobby Umroh

<em>Typical technology for processing red onion affects the quality of red onion produced. The process of drying red onion is one of the important factors in producing the best quality of red onion. Environmentally friendly and easy operation and maintenance technology is the desired technology. In the process of engine design, the strength of the material and structure are the main factors of the building of the machine. Calculation with finite element method (FEM) is the best choice to obtain information on stress distribution on a machine structure. In this study, the calculation of the FEM method was assisted by Ansys APDL 15.0 software. The objectives of this study were: (1) calculation of the load on the tray structure, (2) the distribution of stress on the tray structure, seat, and frame for red onion dryers, and (3) analyzing the strength of the material using the Tresca and Energy Distortion methods. The input load comes from the weight of the tray and red onion. The analytical method used is the finite element method with the type of structural analysis and Beam 3Node 189 element type. Based on the FEM simulation results, the maximum stress that occurs in the tray is 1.22 MPa and the maximum deflection is 0.0055 mm. The maximum stress in the tray support structure is 33.25 MPa and the maximum deflection is 0.014 mm. The maximum stress on the frame structure of the onion drying machine is 0.89 MPa and the maximum deflection is 0.000235 mm which occurs in the middle of the machine structure. Using the Tresca and Distortion Energy theories, it is found that the stresses that occur are still far from the failure criteria for all structures. Likewise, the deflection that occurs is very small so that the construction of the onion drying machine is safe to use.</em>


2020 ◽  
Vol 17 (6) ◽  
pp. 579-587
Author(s):  
Kunlapat THONGKAEW ◽  
Thanwit NAEMSAI

Over the years, plastic water bottle manufacturing, especially PET (Polyethylene terephthalate) bottle has been steadily increasing due to its toughness, transparency, and chemical properties. However, most manufacturers have to spare time, and cost, verifying their prototypes in accordance to the Thai Industrial Standard (TIS) before any mass production can start. This paper aims to overcome some of these problems by using Finite Element Method (FEM) to study bottle mechanical properties, particularly maximum stress and deformation that can be employed to evaluate performance and optimal thickness. From simulation results the optimal thickness of a 6-liter bottle, that its maximum stress can still be kept under critical value, is 0.45 mm. The thinner and lighter bottle reduces the amount of material usage. The FEM simulation also speeds up and alleviates some necessary testing procedures in a prototype designing process.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4449
Author(s):  
Miran Merhar

In composite materials, the use of failure criteria is necessary to determine the failure forces. Various failure criteria are known, from the simplest ones that compare individual stresses with the corresponding strength, to more complex ones that take into account the sign and direction of the stress, as well as mutual interactions of the acting stresses. This study investigates the application of the maximum stress, Tsai-Hill, Tsai-Wu, Puck, Hoffman and Hashin criteria to beech plywood made from a series of plies of differently oriented beech veneers. Specimens were cut from the manufactured boards at various angles and loaded by bending to failure. The mechanical properties of the beech veneer were also determined. The specimens were modelled using the finite element method with a composite modulus and considering the different failure criteria where the failure forces were calculated and compared with the measured values. It was found that the calculated forces based on all failure criteria were lower than those measured experimentally. The forces determined using the maximum stress criterion showed the best agreement between the calculated and measured forces.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2013 ◽  
Vol 61 (1) ◽  
pp. 111-121 ◽  
Author(s):  
T. Jankowiak ◽  
T. Łodygowski

Abstract The paper considers the failure study of concrete structures loaded by the pressure wave due to detonation of an explosive material. In the paper two numerical methods are used and their efficiency and accuracy are compared. There are the Smoothed Particle Hydrodynamics (SPH) and the Finite Element Method (FEM). The numerical examples take into account the dynamic behaviour of concrete slab or a structure composed of two concrete slabs subjected to the blast impact coming from one side. The influence of reinforcement in the slab (1, 2 or 3 layers) is also presented and compared with a pure concrete one. The influence of mesh density for FEM and the influence of important parameters in SPH like a smoothing length or a particle distance on the quality of the results are discussed in the paper


2021 ◽  
Vol 37 (5) ◽  
pp. 951-965
Author(s):  
Peng Liu ◽  
Jin He ◽  
Hongwen Li ◽  
Qingjie Wang ◽  
Caiyun Lu ◽  
...  

HighlightsThe peak breaking force and energy consumption change in maize stalk were predicted by the FEM.A high SADBT reduced the PBFR and PBFS and increased the ECSC.The TRYDB had the most critical effect on the peak breaking force and energy consumption.Abstract. The mechanized retention of stalks is the primary method to avoid open burning. However, the variation in the breaking force and energy consumption in the chopping process of mechanized retention must be clarified. Therefore, based on the finite element method (FEM) and field validation experiments, the effects of various edge-curve types and rotational speeds of disc blades for maize stalk retention on the breaking force and energy consumption were examined. The test indices were the peak breaking force of the rind (PBFR) and stalk (PBFS), energy consumption of stalk chopping (ECSC), and energy transmission efficiency (ETE). The test factors were the spiral disc blade type (Archimedean, logarithmic, and sinusoidal-exponential spiral), slide-cutting angles of the disc blade tip (SADBT, 30°, 40°, 50°, and 60°), rotational speed of the Y-type blade (RSYB, 1400, 1600, 1800, 2000, 2200, and 2400 rpm), and transmission ratio between Y-type and disc blades (TRYDB, 0.25, 0.50, 0.75, and 1.0). The chopping process was divided into the cutting processes of the initial rind, rind and pith, final rind, and stalk end. The results showed that the SADBT, TRYDB, and RSYB had significant effects on the PBFR, PBFS, ECSC, and ETE. The most influential factor on all test indices was the TRYDB. The RSYB positively affected the PBFR, PBFS, and ECSC. The growth rates of the PBFR, PBFS, and ECSC increased with the TRYDB. The maximum PBFR, PBFS, and ETE values were obtained under an SADBT of 60°, and the maximum ECSC value was obtained under an SADBT of 40°. The difference in energy consumption between the field validation experiment and simulation was less than 10%, which proved the correct results of the FEM simulation. Keywords: Energy consumption, Finite element method, Maize stalk, Peak breaking force, Slide cutting.


2010 ◽  
Vol 113-116 ◽  
pp. 1707-1711
Author(s):  
Jian Hua Hu ◽  
Yuan Hua Shuang

A method combines a back propagation neural networks (BPNN) with the data obtained using finite element method (FEM) is introduced in this paper as an approach to solve reverse problems. This paper presents the feasibility of this approach. FEM results are used to train the BPNN. Inputs of the network are associated with dimension deviation values of the steel pipe, and outputs correspond to its pass parameters. Training of the network ensures low error and good convergence of the learning process. At last, a group of optimal pass parameters are obtained, and reliability and accuracy of the parameters are verified by FEM simulation.


2001 ◽  
Vol 124 (1) ◽  
pp. 65-70 ◽  
Author(s):  
S. Sriram ◽  
C. J. Van Tyne

Spherical dies are increasing in popularity in the cold-forming industry because of the ease in subsequent secondary operations. This paper presents criteria curves, calculated using the finite element method, to avoid central bursting or internal chevrons in forward extrusions through spherical dies. Critical values of mean stress at the centerline of the extrusion are used as failure criteria to distinguish between acceptable and unacceptable die designs. These failure criteria are conservative in that the critical step for central bursting is considered to be the formation of a microvoid during extrusion, rather than linking of the voids during continued deformation. The resulting process criteria curves are conservative estimates of internal chevron formation during extrusion through spherical dies.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Alamsyah Alam ◽  
A. B. Mapangandro ◽  
Amalia Ika W ◽  
M U Pawara

Ro - Ro Ferry is equipped with a connecting door between the port and the ship. The ramp door experiences load during loading and discharging of the rolling cargo. This repetitive load may cause fatigue failure. The structure of the ramp door should withstand this load. Therefore, The ramp door should be properly designed to ensure the structural integrity of the ramp door. The purpose of this research is to analyze the maximum stress and the Fatigue life of the bow ramp door. The method used is the finite element method. The given loads are several types of vehicles that are commonly transported by the ship. The given load case is the point load working at the girder plate and between the girder plate. Based on the simulation results with the given point load, the maximum stress is identified located between the girder for the large truck case with 397.02 MPa, while the minimum stress located at the girder for sedan car with 43.93 MPa. As for the fatigue life of the bow ramp door construction. it is 1.17 ~ 398.64 years, and the load cycle is 5.35 x 104 ~ 9.05 x 106 cycle. Keywords : Bow Ramp Door; Stress; Fatigue Life; Finite Element; Ferry


Sign in / Sign up

Export Citation Format

Share Document