scholarly journals 136) The Water-Penetration in the Construction Joint of Reinforced Concrete(Materials・Construction)

1956 ◽  
Vol 54 (0) ◽  
pp. 141-144
Author(s):  
Masaichi Yuwama ◽  
Seiichi Matsuda
2019 ◽  
Vol 25 (1) ◽  
pp. 19
Author(s):  
Mufti Amir Sultan ◽  
Rudy Djamluddin

The construction of structures with reinforced concrete materials in coastal environments will face constraints in the form of chloride influences which can lead to a decrease in strength and even damage. One of the most popular reinforcement methods today is using a corrosion resistant Glass Fiber Reinforced Polymer (GFRP) material. This study was conducted to investigate the behavior of GFRP-S rectifying capacity in reinforced concrete beam reinforcement in 1, 3, 6, and 12 months. The test specimens consist of 10 reinforced beams with dimensions (15x20x330) cm that has been reinforced with GFRP-S in the bending area. Beams without immersion symbolized B0, immersion 1, 3, 6, and 12 months each given symbols B1, B3, B6 and B12. The test specimen is loaded statically until it fails. To record the data when testing is installed strain gauge and LVDT. From the result of the research, it can be seen that there is a decrease of GFRP-S rectification capacity in the test specimen after soaking in seawater. The value of the decrease in the capacity of the bonding can be predicted by using the equation


2019 ◽  
Vol 97 ◽  
pp. 04023
Author(s):  
Irina Yakovleva ◽  
Valentina Kurochkina

Within latest decades cast-in-place construction of residential houses has been actively developed. Works on erection of cast-in-place frame of the building are normally performed by phases, which results in a necessity to arrange construction joints of concreting. In accordance with regulatory documents, it is allowed to arrange construction joints in any place of the slab, in parallel with its less side. As well, it is necessary to observe the technology for joint arrangement. As practice shows, observing only technology of construction joint arrangement is insufficient to provide for strength properties of cast-in-place reinforced-concrete slabs. This article provides an analysis of actual geodetic pre-construction surveys, design and theoretically-calculated solutions; case study is a multistoried building under construction. On which basis, excessive slab deflections in the places of construction joints, were detected. It is established, that the main reason for deflection occurrence is early removal of slab formwork and installation of supports for temporary supporting. On the basis of obtained findings authors make conclusions regarding compulsory observance of the technology for construction joint arrangement, regarding a necessity to remove formwork according to common standards 70.13330.2012; as well, it is recommended to leave formwork under construction joints until concrete gains 100% of ruggedness.


2016 ◽  
Vol 20 (7) ◽  
pp. 1125-1138 ◽  
Author(s):  
Jing Yu ◽  
Xiaojun Liu ◽  
Xingwen Liang

A new model that can simulate the behavior of construction joint subjected to seismic forces was proposed. Nonlinear time-history analysis was carried out for reinforced concrete regular frame structures designed in different seismic intensity regions as well as with different height-to-width ratios. Two kinds of numerical models are adopted to simulate the seismic behavior of each frame, one with construction joint using the new proposed model and the other without construction joint using the conventional model. Results show that the influence of construction joint on the seismic behavior of reinforced concrete frame is strongly related to structural nonlinearity. It may increase the top displacement and the inter-story drift, change the inter-story drift distributions, and exacerbated the local reaction of key members. The influence of construction joint cannot be ignored for structures with low emergency capacity against major earthquake. Seismic design suggestions are proposed from the aspect of calculation analysis method.


2021 ◽  
Vol 921 (1) ◽  
pp. 012085
Author(s):  
W M T Atmadja ◽  
H Parung ◽  
R Irmawaty ◽  
A.A Amiruddin

Abstract The study aims to determine the effect of cavities on the load capacity of reinforced concrete slabs when compared to massive reinforced concrete slabs that have the same thickness, with the hope of reducing the structure’s weight and the use of concrete materials. The modified PVC pipes, as cavity formers, will be placed in the tensile area without reducing the flexural strength that is caused by the weak nature of concrete against tensile strength. The test is carried out on a full scale against 14 cm thick solid plates (PP-1), and hollow plates, which use modified PVC pipes (PB-2), with a cavity diameter of 7.6 cm that has the same thickness. The test uses joint supports on all four sides and the loading pattern is evenly distributed. All slabs are made, on the spot, of cast concrete with the same size and distance between the reinforcement. PVC hollow plate (PB-2) has the same effective thickness as solid plate but has 14% less concrete volume. The maximum load capacity on the solid plate (PP-1) is 522.66 kN and on the hollow plate (PB-2) is 444.33 kN. The melting capacity on the solid plate (PP-1) is 373,515 kN and on the hollow plate (PB-2) is 325,935 kN. Initial crack load capacity on the solid plate (PP-1) is 19.5 kN and on the hollow plate (PB-2) is 16.75 kN


2014 ◽  
Vol 20 (2) ◽  
pp. 85-94
Author(s):  
P. Zhang ◽  
F. H. Wittmann ◽  
M. Haist ◽  
H. S. Müller ◽  
P. Vontobel ◽  
...  

1958 ◽  
Vol 60.1 (0) ◽  
pp. 125-128
Author(s):  
Yoshitsura Yokoo ◽  
Kunio Yamagata ◽  
Hisao Kami ◽  
Michio Shimada

Sign in / Sign up

Export Citation Format

Share Document