scholarly journals Production, Characterisation, and Isolation of Lipase from Aspergillus niger by using Palm Oil as Inducer

Eksergi ◽  
2015 ◽  
Vol 12 (1) ◽  
pp. 01
Author(s):  
Sri Wahyu Murni ◽  
Siti Diyar Kholisoh ◽  
Tanti D.L. ◽  
Petrissia E.M.

The objective of the research was to produce, isolate and characterise lipase from Aspergillus niger, and therefore inducted it by using palm oil. The lipase enzyme was produced through a batch fermentation process in a 1.4 liters-fermentor. Fermentation was carried out at room temperature, initial pH of 7, the stirring speed of 250 rpm, aeration rate of 1 vvm, and inducer concentration of 3%-m/v palm oil/ml. Enzymes was characterised at several temperature and pH variations. The lipase showed the optimum performance at pH of 7 and temperature of 30 °C with the activity of 1.5 U / ml. Isolation of lipase yielded a 4-times-increase in its activity by using 90% ammonium sulfate.

2021 ◽  
Vol 26 (2) ◽  
pp. 2464-2470
Author(s):  
ANCA-IRINA GALACTION ◽  
◽  
ALEXANDRA CRISTINA BLAGA ◽  
ALEXANDRA TUCALIUC ◽  
LENUŢA KLOETZER ◽  
...  

The previous studies on ergosterol production by Saccharomyces cerevisiae in presence of n-dodecane as oxygen-vector have been continued by mathematical modelling the fermentation process. In this purpose, the most efficient fermentation regime has been considered, namely fed-batch fermentation, and was based on the influences of hydrocarbon volumetric fraction, biomass concentration, and aeration rate on the ergosterol content inside the yeast cells. The model describing the fermentation process has been established by means of the statistical analysis, using a factorial experiment of second order. The considered variables control the ergosterol production in a 94.4% extent, the biomass concentration exhibiting the most important influence.


2017 ◽  
Vol 6 (1) ◽  
pp. 61-67
Author(s):  
Iqbal Syaichurrozi

The purpose of this research was to analyze the biogas production from co-digestion of Salvinia molesta and rice straw. Ratio of Salvinia molesta and rice straw was 5:0, 4:1, 3:2. Lab-scale-batch digesters (600 mL) were operated at room temperature (30 oC) and pressure of 1 atm. Total basis of Salvinia molesta and rice straw was 10 gr, water was added with ratio of organic matter:water = 1:7 (w/w), rumen fluid was added as inoculum, initial pH was adjusted to be 7. Fermentation process was conducted for 30 days. The results showed that total biogas volume for ratio of 5:0, 4:1, 3:2 was 6.300.00; 32.7618.32; 107.5418.51 mL/g VS respectively. The pH of substrate was changing from 7.00 to 6.770.19; 6.600.14; 6.730.09 for all variables respectively.


RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105003-105009
Author(s):  
Baoshi Wang ◽  
Jian Chen ◽  
Hua Li ◽  
Fuxin Sun ◽  
Youran Li ◽  
...  

Segmentation recycling fermentation based on a pellet-dispersion strategy to reconstruct the traditional citric acid batch fermentation process is reported.


2020 ◽  
Vol 34 (1) ◽  
pp. 49-57
Author(s):  
Teerin Chysirichote

Valorization of banana peel (BP) through solid state fermentation (SSF) was aimed<br /> in this research. The appropriate conditions of citric acid (CA) production by SSF of<br /> Aspergillus niger were investigated. Firstly, the optimum initial pH of the BP and the<br /> aeration rate were studied by conducting SSF in a 250-mL flask and 2-L glass column,<br /> respectively. It was found that the initial pH of the BP and aeration rates affected the CA<br /> production. The results showed that the initial pH of 5.0 and 1.0 vvm aeration were appropriate for the CA production of A. niger using BP as a substrate. The problem of rising temperature during SSF was found when applying the optimum condition to the SSF<br /> in the 20-L packed bed bioreactor (PBB), which caused a decrease in the CA production<br /> compared to that of the glass column. The cooling air jacket constructed to the PBB to<br /> remove the heat during the SSF helped increase the CA production from that in the PBB.<br /> The maximum CA production in the 20-L air-jacketed PBB was 124.0±19.2 mg g–1DS.


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


Author(s):  
Nguyễn Thị Hồng Thu ◽  
Đặng Minh Nhật ◽  
Nguyễn Hoàng Dung

Sugar palm (Arenga pinnata) is a feather palm native to tropical Asia. In Vietnam, it is named Búng Báng or Đoác and grown only on the highlands in the central or northern part of Vietnam. It is utilized for many purposes, especially for Ta Vat wine production - a characteristic and unique product of Co Tu ethnic minority. However, because of the natural fermentation used in the production, the product quality is inconsistent. The purpose of this study was to examine a new procedure of using palm sap for making Ta Vat wine. Some characteristics of the sap, which was collected at Nam Giang district, Quang Nam province are determined, proving the potential of the sap for making wine product. The quality of sap changes quickly at room temperature. At low temperature (4 - 60C), the changes in sap quality are apparently slower. Examining some factors affecting its quality during the wine fermentation process, we determined the best parameters for the fermentation process as follows: inoculum size of 3% with cell density of about 1x108 cells/ml, the addition of the extract from the bark of Ceylon ironwood (Mesua ferrea L.) 4%. Keywords: Arenga pinnata, sap, Ceylon ironwood bark, Mesua ferrea L., wine fermentation.


2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Trismillah

Cavendish banana peel can be used as a substitute for the expensive xylan, while molasses than as a source of carbon as well as nitrogen, minerals and nutrients needed for the growth of microbes that can produce the enzyme. Xylanase produced from Bacillus stearothermopillus DSM 22, using media cavendish banana peels with the addition of molasses 1%, 2%, and 3%. Fermentation is done in a shaker incubator at 550C temperature conditions, initial pH 8, and 250 rpm agitation. The result showed the highest enzyme activity of 4,14 ± 0,16 U/mL min., on the addition 2% molasses after 24 hours. Further fermentation carried out in the fermenter working volume of 3.5 liters, with the condition of temperature 550C, pH 8, aeration 1 vvm, agitation 250 rpm, the highest spesific enzyme of activity of 51,62 ± 0,16 U/mg after 24 hours. Partial purification of xylanase enzyme fermentation is done with the results of microfiltration, ultrafiltration, ammonium sulfate (0-80%) and dialysis. There is an increase in the purity of the enzyme at each stage of purification, the highest purity on dialysis 3.23 times of crude enzymes.Kulit buah pisang kapendis dapat digunakan sebagai pengganti xilan yang harganya mahal, sementara molases selain sebagai sumber karbon serta nitrogen, mineral dan nutrisi dibutuhkan untuk pertumbuhan mikroba yang dapat menghasilkan enzim. Xilanase yang dihasilkan dari Bacillus stearothermopillus DSM 22, menggunakan media kulit pisang kapendis dengan penambahan molase 1%, 2%, dan 3%. Fermentasi dilakukan dalam shaker inkubator pada temperatur 550C, pH awal 8, dan agitasi 250 rpm. Hasilnya menunjukkan aktivitas enzim tertinggi 4,14 ± 0,16 U/mL min., pada penambahan 2% molases setelah 24 jam. Selanjutnya fermentasi dilakukan di dalam fermentor, volume kerja dari 3,5 liter, dengan kondisi temperatur 550C, pH 8, aeration 1 vvm, agitasi 250 rpm, aktivitas spesifik tertinggi 51,62 ± 0,16 U/mg setelah 24 jam. Pemurnian parsial fermentasi enzim xilanase dilakukan dengan hasil mikrofiltrasi, ultrafiltrasi, amonium sulfat (0-80%) dan dialisis. Ada peningkatan kemurnian enzim pada setiap tahap pemurnian, kemurnian tertinggi pada dialisis 3,23 kali dari enzim kasar.Keywords: Xylanase, B. stearothermophillus DSM 22, Cavendish banana peel, molasses, enzyme activity


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 467
Author(s):  
Emília Mendes da Silva Santos ◽  
Isabela Regina Alvares da Silva Lira ◽  
Hugo Moraes Meira ◽  
Jaciana dos Santos Aguiar ◽  
Raquel Diniz Rufino ◽  
...  

In this study, a new formulation of low-cost, biodegradable, and non-toxic biosurfactant by Candida sphaerica UCP 0995 was investigated. The study was conducted in a bioreactor on an industrial waste-based medium, and a central composite rotatable design was used for optimization. The best results, namely a 25.22 mN/m reduction in surface tension, a biosurfactant yield of 10.0 g/L, and a critical micelle concentration of 0.2 g/L, were achieved in 132 h at an agitation speed of 175 rpm and an aeration rate of 1.5 vvm. Compositional and spectroscopic analyses of the purified biosurfactant by chemical methods, Fourier transform infrared spectroscopy, and nuclear magnetic resonance suggested that it is a glycolipid-type biosurfactant, and it showed no cytotoxicity in the MTT assay. The biosurfactant, submitted to different formulation methods as a commercial additive, remained stable for 120 days at room temperature. Tensioactive properties and stability were evaluated at different pH values, temperatures, and salt concentrations. The biosurfactant obtained with all formulation methods demonstrated good stability, with tolerance to wide ranges of pH, temperature and salinity, enabling application under extreme environmental conditions. Bioremediation tests were performed to check the efficacy of the isolated biosurfactant and the selected microbial species in removing oil from soil. The results demonstrated that the biosurfactant produced has promising properties as an agent for the bioremediation of contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document