Predictive Modelling of CO2 Injectivity Impairment due to Salt Precipitation and Fines Migration During Sequestration

2021 ◽  
Author(s):  
Muhammad Aslam Md Yusof ◽  
Mohamad Arif Ibrahim ◽  
Muhammad Azfar Mohamed ◽  
Nur Asyraf Md Akhir ◽  
Ismail M Saaid ◽  
...  

Abstract Recent studies indicated that reactive interactions between carbon dioxide (CO2), brine, and rock during CO2 sequestration can cause salt precipitation and fines migration. These mechanisms can severely impair the permeability of sandstone which directly affect the injectivity of supercritical CO2 (scCO2). Previous CO2 injectivity change models are ascribed by porosity change due to salt precipitation without considering the alteration contributed by the migration of particles. Therefore, this paper presents the application of response surface methodology to predict the CO2 injectivity change resulting from the combination of salt precipitation and fines migration. The impacts of independent and combined interactions between CO2, brine, and rock parameters were also evaluated by injecting scCO2 into brine saturated sandstone. The core samples were saturated with NaCl brine with salinity between 6,000 ppm to 100,000 ppm. The 0.1, 0.3, and 0.5 wt.% of different-sized hydrophilic silicon dioxide particles (0.005, 0.015, and 0.060 μm) were added to evaluate the effect of fines migration on CO2 injectivity alteration. The pressure drop profiles were recorded throughout the injection process and the CO2 injectivity alteration was represented by the ratio between the initial and final injectivity. The experimental results showed that brine salinity has a greater individual influence on permeability reduction as compared to the influence of particles (jamming ratio and particle concentration) and scCO2 injection flow rate. Moreover, the presence of both fines migration and salt precipitation during CO2 injection was also found to intensify the permeability reduction by 10%, and reaching up to threefold with increasing brine salinity and particle size. The most significant reductions in permeability were observed at higher brine salinities, as more salts are being precipitated out which, in turn, reduces the available pore spaces and leads to a higher jamming ratio. Thus, more particles were blocked and plugged especially at the slimmer pore throats. Based on comprehensive 45 core flooding experimental data, the newly developed model was able to capture a precise correlation between four input variables (brine salinity, injection flow rate, jamming ratio, and particle concentration) and CO2 injectivity changes. The relationship was also statistically validated with reported data from five case studies.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Ibrahim M. Mohamed ◽  
Jia He ◽  
Hisham A. Nasr-El-Din

Reactions of CO2 with formation rock may lead to an enhancement in the permeability due to rock dissolution, or damage (reduction in the core permeability) because of the precipitation of reaction products. The reaction is affected by aquifer conditions (pressure, temperature, initial porosity, and permeability), and the injection scheme (injection flow rate, CO2:brine volumetric ratio, and the injection time). The effects of temperature, injection flow rate, and injection scheme on the permeability alteration due to CO2 injection into heterogeneous dolomite rock is addressed experimentally in this paper. Twenty coreflood tests were conducted using Silurian dolomite cores. Thirty pore volumes of CO2 and brine were injected in water alternating gas (WAG) scheme under supercritical conditions at temperatures ranging from 21 to 121 °C, and injection rates of 2.0–5.0 cm3/min. Concentrations of Ca++, Mg++, and Na+ were measured in the core effluent samples. Permeability alteration was evaluated by measuring the permeability of the cores before and after the experiment. Two sources of damage in permeability were noted in this study: (1) due to precipitation of calcium carbonate, and (2) due to migration of clay minerals present in the core. Temperature and injection scheme don't have a clear impact on the core permeability. A good correlation between the initial and final core permeability was noted, and the ratio of final permeability to the initial permeability is lower for low permeability cores.


2021 ◽  
Vol 2 (2) ◽  
pp. 55
Author(s):  
M Nabil Ziaudin Ahamed ◽  
Muhammad Azfar Mohamed ◽  
M Aslam Md Yusof ◽  
Iqmal Irshad ◽  
Nur Asyraf Md Akhir ◽  
...  

Carbon dioxide, CO2 emissions have risen precipitously over the last century, wreaking havoc on the atmosphere. Carbon Capture and Sequestration (CCS) techniques are being used to inject as much CO2 as possible and meet emission reduction targets with the fewest number of wells possible for economic reasons. However, CO2 injectivity is being reduced in sandstone formations due to significant CO2-brine-rock interactions in the form of salt precipitation and fines migration. The purpose of this project is to develop a regression model using linear regression and neural networks to correlate the combined effect of fines migration and salt precipitation on CO2 injectivity as a function of injection flow rates, brine salinities, particle sizes, and particle concentrations. Statistical analysis demonstrates that the neural network model has a reliable fit of 0.9882 in R Square and could be used to accurately predict the permeability changes expected during CO2 injection in sandstones.


Author(s):  
Florence Schwarzenbach ◽  
Cecile Berteau ◽  
Orchidee Filipe-Santos ◽  
Tao Wang ◽  
Humberto Rojas ◽  
...  

Energies ◽  
2017 ◽  
Vol 10 (2) ◽  
pp. 238 ◽  
Author(s):  
Akihiro Hamanaka ◽  
Fa-qiang Su ◽  
Ken-ichi Itakura ◽  
Kazuhiro Takahashi ◽  
Jun-ichi Kodama ◽  
...  

Author(s):  
Luiz R. Sobenko ◽  
José A. Frizzone ◽  
Antonio P. de Camargo ◽  
Ezequiel Saretta ◽  
Hermes S. da Rocha

ABSTRACT Venturi injectors are commonly employed for fertigation purposes in agriculture, in which they draw fertilizer from a tank into the irrigation pipeline. The knowledge of the amount of liquid injected by this device is used to ensure an adequate fertigation operation and management. The objectives of this research were (1) to carry out functional tests of Venturi injectors following requirements stated by ISO 15873; and (2) to model the injection rate using dimensional analysis by the Buckingham Pi theorem. Four models of Venturi injectors were submitted to functional tests using clean water as motive and injected fluid. A general model for predicting injection flow rate was proposed and validated. In this model, the injection flow rate depends on the fluid properties, operating hydraulic conditions and geometrical characteristics of the Venturi injector. Another model for estimating motive flow rate as a function of inlet pressure and differential pressure was adjusted and validated for each size of Venturi injector. Finally, an example of an application was presented. The Venturi injector size was selected to fulfill the requirements of the application and the operating conditions were estimated using the proposed models.


2019 ◽  
Vol 21 (27) ◽  
pp. 14605-14611 ◽  
Author(s):  
R. Moosavi ◽  
A. Kumar ◽  
A. De Wit ◽  
M. Schröter

At low flow rates, the precipitate forming at the miscible interface between two reactive solutions guides the evolution of the flow field.


2012 ◽  
Vol 594-597 ◽  
pp. 2486-2489
Author(s):  
Bao Jun Liu ◽  
Hai Xia Shi ◽  
Yun Sheng Cai

Separate layer water flooding is adopted in most oilfields in China and the injection flow rate is controlled by the diameter of water nozzle of each layer. In order to ensure the effect of water injection, applicable water nozzles need to be adjusted to meet the requirements of injection flow rate. The adjustment is commonly realized according to experience, which leads to long adjustment time and low efficiency. To solve this problem, the coupling model of wellbore conduit flow, throttled flow and formation seepage was established based on theoretical analysis, which could provide theoretical basis for water nozzles adjustment. In the model, the Bernoulli Equation was adopted to analyze wellbore conduit flow; indoor experiments were done to research throttled flow; the research object of the seepage was finite radius well in homogeneous infinite formation.


2021 ◽  
Author(s):  
C Hopp ◽  
Steven Sewell ◽  
S Mroczek ◽  
Martha Savage ◽  
John Townend

©2019. American Geophysical Union. All Rights Reserved. Fluid injection into the Earth's crust can induce seismic events that cause damage to local infrastructure but also offer valuable insight into seismogenesis. The factors that influence the magnitude, location, and number of induced events remain poorly understood but include injection flow rate and pressure as well as reservoir temperature and permeability. The relationship between injection parameters and injection-induced seismicity in high-temperature, high-permeability reservoirs has not been extensively studied. Here we focus on the Ngatamariki geothermal field in the central Taupō Volcanic Zone, New Zealand, where three stimulation/injection tests have occurred since 2012. We present a catalog of seismicity from 2012 to 2015 created using a matched-filter detection technique. We analyze the stress state in the reservoir during the injection tests from first motion-derived focal mechanisms, yielding an average direction of maximum horizontal compressive stress (SHmax) consistent with the regional NE-SW trend. However, there is significant variation in the direction of maximum compressive stress (σ1), which may reflect geological differences between wells. We use the ratio of injection flow rate to overpressure, referred to as injectivity index, as a proxy for near-well permeability and compare changes in injectivity index to spatiotemporal characteristics of seismicity accompanying each test. Observed increases in injectivity index are generally poorly correlated with seismicity, suggesting that the locations of microearthquakes are not coincident with the zone of stimulation (i.e., increased permeability). Our findings augment a growing body of work suggesting that aseismic opening or slip, rather than seismic shear, is the active process driving well stimulation in many environments.


2020 ◽  
Author(s):  
Jiuchen Ma ◽  
Qian Jiang ◽  
Qiuli Zhang ◽  
Yacheng Xie ◽  
Yahui Wang ◽  
...  

Abstract A coupling ground source heat pump system (CGSHP) is established in areas where groundwater is shallow but the seepage velocity is weak, which sets up pumping and injection wells on both sides of borehole heat exchangers (BHEs). A convection-dispersion analytical model of excess temperature in aquifer that considers groundwater forced seepage and axial effects and thermal dispersion effects is proposed. A controllable forced seepage sandbox is built by equation analysis method and similarity criteria. Through indoor test and the proposed analytical model, the correctness and accuracy of the numerical simulation software FEFLOW7.1 is verified. The influence of different pumping-injection flow rate on the heat transfer characteristic of BHEs is studied by numerical simulation. The results show that the average heat efficiency coefficient of BHEs increases and the heat influence range of downstream BHEs expands with the increasing of pumping-injection flow rate. The relation curve between Pe and the increment of heat transfer rate per unit depth of BHEs (Δ`q) is distributed as Gaussian function. The pumping-injection flow rate that makes Darcy velocity reaches 0.6×10-6~1.4×10-6 m∙s-1 in the aquifer is the best reference range for CGSHP system,so 400~600 m3∙d-1 is taken as the best pumping-injection flow rate in this paper.


Author(s):  
Dengke Sun ◽  
Xiaojiang Wang ◽  
Jun Li ◽  
Jiang Liu ◽  
Changyue Li

In this paper, a hydraulic model for Safety Injection System (SIS) of M310 reactor is extended. The model is checked and calibrated by test results under test conditions. Based on commissioning test criteria, the system’s maximum and minimum pressure drop coefficients are calibrated according to anti-extrapolation method. Considering modifications of various projects, analysis of 41 flow rate curves under different conditions has been performed using this model. These flow rate curves indicate the relationship between injection flow rates and primary circuit pressures. Accident analysis has taken these curves as input data. Also, the strategy for dealing with accident is established based on these curves. Results of accident analysis show that the design of SIS system can satisfy the safety requirements of M310 reactor. The sensitivity analysis of typical conditions illustrates that injection flow rate will increase as the primary circuit pressure decreases. With the same configuration, the injection flow rate during recirculation phase will be smaller than that during direct injection phase, which is mainly caused by the decrement of suction elevation and the increment of fluid temperature. When low head safety injection pump (LHSI PO) is boosting high head safety injection pump (HHSI PO), if the pressure is relatively high, the injection flow rate will not be improved apparently. If the pressure is relatively low, the boosting is necessary. These conclusions can be the basis for the later optimization design.


Sign in / Sign up

Export Citation Format

Share Document