scholarly journals USE OF ZEOLITE IS ACTIVATED AS SUBSTITUTION OF CEMENT FOR PRICE AND COST

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ahmad Nurfiki Alwi ◽  
Arif Rahman Setiaji ◽  
Abdurrohim Kurnia Agung ◽  
Abdul Halim

The number of economic needs is one of the fundamental aspects to support the survival of every individual in an area.  If seen in general, the cost of building the building and residential community still use building materials and installation costs are relatively higher.  With the advancement of technology has found a lightweight brick that has better strength, lighter, faster installation and environmentally friendly, so many people began to switch to using lightweight bricks.  For now the price of lightweight brick is still expensive, but this deficiency is covered with the speed of mounting and light weight so overall lightweight brick usage on certain patterns is very profitable.  The use of cement on lightweight bricks leads to high production costs.  With the above problems we have a breakthrough to replace the cement by using zeozolites containing silica compounds that resemble one of the cement compounds.  In this research, cement replacement with Zeolite is 20%, 40% and 60%.  Before use Zeolite was first activated using Fly Ash ratio of 65% Zeolite: 35% Fly Ash and 50% Zeolite: 50% Fly Ash, also activated using Ca (OH) 2 ratio 65% Zeolite: 35% Ca (OH) 2  And 50% Zeolite: 50% Ca (OH) 2.  Thus, there are 15 compositions including the control composition, each composition will be made up of 10 specimens.  Hypothesis testing using two way anova, tested is the effect of cement change treatment with Zeolite and comparison of Zeolite composition with Fly Ash and Ca (OH) 2 to compressive strength, absorption and cost. Keywords: Zeolite, Cement, compressive strength, Cost

2013 ◽  
Vol 438-439 ◽  
pp. 30-35 ◽  
Author(s):  
Nirdosha Gamage ◽  
Sujeeva Setunge ◽  
Kasuni Liyanage

The Victoria State of Australia has the second largest reserves of brown coal on earth, representing approximately 20% of the worlds reserves, and at current use, could supply Victoria with its energy for over 500 years. Its combustion, annually, yields up to 1.3 million tonnes of fly ash, which is largely use for land-fills. Disposal of fly ash in open dumps cause massive environmental problems such as ground water contamination that may create various health problems. This study focuses on the usability of brown coal fly ash to develop a sustainable building material. A series of laboratory investigations was conducted using brown coal fly ash combined with cement and aggregate to prepare cold pressed samples aiming to test their properties. Initial results indicate that compressive strength satisfies minimum standard compressive strength required for bricks or mortar.


2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Dwi Septiyana Sari ◽  
◽  
Susanti Sundari

Abstract This study discusses the use of fly ash waste from coal burning on the manufacture of PCC (Portland composite cement) at PT. XYZ Lampung. The purpose of this research is to look at the technical studies and the efficiency of raw materials in the use of fly ash in cement making, in this case PCC cement (Portland Composite Cement). The steps taken in analyzing the data in this study were viewed from a technical aspect by means of a physical test, namely the cement compressive strength test at the age of 3 days, 7 days, and 28 days using the Compression Testing Machine. This test was conducted to see the comparison of the compressive strength of PCC cement using limestone and fly ash as raw materials, then calculate the difference in raw material costs in the year before and after the replacement of limestone with fly ash. The results showed that cement with the addition of fly ash after 3 days, 7 days and 28 days had an increased compressive strength value, which increased 21.69%, 16.07% and 8.05% respectively of the compressive strength of cement using limestone. The use of fly ash as a substitute for limestone has an effect on the cost of raw materials, where the difference between the cost of raw materials in 2019 and the cost of raw materials in 2018 is Rp. 39,440,952,074.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 38-47
Author(s):  
Joaquín Abellán García ◽  
Nancy Torres Castellanos ◽  
Jaime Antonio Fernandez Gomez ◽  
Andres Mauricio Nuñez Lopez

Ultra-high-performance concrete (UHPC) is a kind of high-tech cementitious material with superb mechanical and durability properties compared to other types of concrete. However, due to the high content of cement and silica fume used, the cost and environmental impact of UHPC is considerably higher than conventional concrete. For this reason, several efforts around the world have been made to develop UHPC with greener and less expensive local pozzolans. This study aimed to design and produce UHPC using local fly ash available in Colombia. A numerical optimization, based on Design of Experiments (DoE) and multi-objective criteria, was performed to obtain a mixture with the proper flow and highest compressive strength, while simultaneously having the minimum content of cement. The results showed that, despite the low quality of local fly ashes in Colombia, compressive strength values of 150 MPa without any heat treatment can be achieved.


2020 ◽  
Vol 165 ◽  
pp. 03029
Author(s):  
Jiangong Yang

Through comparatively analyzing the impermeability and compressive strength test data of nano CaCO3 concrete with different content, this paper puts forward the method of optimizing the durability of nano CaCO3 concrete, and studies the influence of the content of fly ash on the durability of nano CaCO3 concrete on this basis, so as to provide a reference for improving the durability of concrete, so as to improve the recycling and reusing efficiency of building materials, and accelerate the practical application of nano CaCO3 concrete in engineering.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5699
Author(s):  
Rosicky Methode Kalombe ◽  
Victor Tunde Ojumu ◽  
Chuks Paul Eze ◽  
Sammy Mwasaha Nyale ◽  
John Kevern ◽  
...  

This study reports on formulations and conditions for producing fly ash-based geopolymers with a view to showing that the compressive strength required for construction applications can be obtained without the addition of aggregates, sand, and/or cement. It was shown in a series of experiments constituting at least 73% fly ash that a compressive strength of up to 90 MPa can be obtained depending on the curing conditions. While high alkalinity resulted in stronger materials, the results showed about 40% savings in CO2 emissions without using sand and cement. Such materials are suited for construction applications with minimal environmental impact.


Author(s):  
Madhurima Das ◽  
Siba Prasad Mishra

Coping with population growth, houses are built to meet the hike. The prerequisites for concrete and steel reinforcements have surged up globally since last 3 to 4decades. Shortage of natural building materials, increased wastes from coal based industries to augment carbon foot print has worried the engineers to reuse their wastes (such as fibres, powders, granules, etc.) as building materials ingredient. Glass fibre has improved flexural capabilities with fly ash dosages in cement concrete and alternately helps in restricting environmental degradation. Present research aims at investigating the impact of glass fiber (at 1%, 2% and 3% addition) and fly ash (dosages of 10% and 20% over the existing fly ash in PPC). The ingredients and microstructure of composites are found by either X-ray fluorescent spectroscopy or scanning electron microscope. Experimental evaluation results of the blended composite concrete parameters of RCC are experimentally evaluated and compared have shown that concrete with 10% cement substitution with fly ash and 3% fibre showed optimum compressive strength performance than the concrete without fibre and fly ash and also chemically resistant against commonly used M-20 grade of Concrete.


2018 ◽  
Vol 20 (2) ◽  
pp. 65-70
Author(s):  
Endah Kanti Pangestuti ◽  
Sri Handayani ◽  
Mego Purnomo ◽  
Desi Christine Silitonga ◽  
M. Hilmy Fathoni

Abstract. The use of coal waste (Fly Ash) is currently being developed in building materials technology, as a high-strength concrete mix material. This study aims to determine the strength of concrete by adding fly ash as a substitute for cement in high-strength concrete mixtures. This research was conducted with an experimental method to obtain results and data that would confirm the variables studied. The total number of specimens used in this study were 36 pieces with different sizes of cube tests which were 15 cm x 15 cm x 15 cm. A total of 36 concrete samples were used to test the compressive strength of concrete with a percentage of Fly Ash in  0% (normal concrete), 20%, 25% and 30% with a concrete treatment age of 7 days, 21 days and 28 days. A total of 12 more samples were used to test water absorption in concrete at 28 days of maintenance. Each percentage percentage of Fly Ash uses 3 concrete test samples. The increase in compressive strength occurs at 7, 21 and 28 days in concrete. However, the compressive strength of concrete produced by concrete using the percentage of Fly Ash is always lower than the value of normal concrete compressive strength. From testing the compressive strength of concrete at 28 days of treatment with content of 0%, 20%, 25% and 30% Fly Ash obtained results of 45.87 MPa, 42.67 MPa, 40.89 MPa, and 35.27 MPa respectively


2019 ◽  
Vol 15 (1) ◽  
pp. 48-57 ◽  
Author(s):  
R. Saraswathy ◽  
Jijo James ◽  
P. Kasinatha Pandian ◽  
G. Sriram ◽  
J. K. Sundar ◽  
...  

AbstractThe present study involved the utilization of crushed glass as an auxiliary additive in the manufacture of cement stabilized fly ash (CSF) bricks. The bricks were made with 1:1 proportion of fly ash and sand stabilized with 20 % cement. Crushed glass was used as replacement for the fine aggregate in increments of 10 % up to 40 % wherein the sand was completely replaced with crushed glass. The various mix proportions were then moulded into bricks with the addition of water by hand moulding method of forming the bricks and sun dried followed by sprinkle curing over a period of 21 days. The bricks were then subjected to compressive strength, water absorption and efflorescence tests to gauge its performance. The investigation revealed that the addition of crushed glass to the brick mix resulted in an increase in strength of the bricks, however, the maximum strength achieved could not achieve the strength of the control specimen. But the strength was higher than the minimum strength recommended by Bureau of Indian Standards (BIS) for stabilized blocks as well as burnt bricks. It also reduced the water absorption marginally while no efflorescence was seen in any of the combinations. A cost comparison revealed that the optimal combination with crushed glass was able reduce the cost of the brick by 20 %.


2019 ◽  
Vol 11 (5) ◽  
pp. 1283 ◽  
Author(s):  
Peng Xu ◽  
Qingliang Zhao ◽  
Wei Qiu ◽  
Yan Xue ◽  
Na Li

Alkali-activated materials (AAM) are widely applied in the field of building materials and civil engineering to substitute cement materials. This study used two types of municipal solid waste incineration fly ash (MSWI-FA): grate-firing fly ash (GFFA) and fluidized bed fly ash (FBFA) as brick raw materials. Various weight ratio of 20%, 30%, and 40% GFFA and FBFA were added to coal fly ash (CFA), GGBFs (Ground Granulated Blast-Furnace Slag), and an alkali-activating reagent to produce alkali-activated bricks. Microstructure and crystalline phase composition were observed to analyze their compressive strength, and a leaching test was used to prove the material’s safety for the environment. It can be seen from the results of this study that the alkali-activated bricks containing FBFA had higher compressive strength than those containing GFFA in the same amount. Considering the engineering properties, the alkali-activated bricks containing FBFA are more suitable to be used as building materials. The difference in the compressive strength resulted from the large amount of calcium compounds and chloride salts present in the GFFA. From SEM analysis, it was observed that there was a large number of pores in the microstructure. It was also found from the results of XRD that the bricks containing GFFA contained a large amount of chloride salt. From the results of the two leaching tests, it was found that the amounts of six heavy metals detected in the leachates of the bricks in this study met the corresponding regulation standards. This described MSWI-FA is suitable for use as alkali-activated material, and its products have potential to be commercially used in the future.


Buildings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 67 ◽  
Author(s):  
Jolanta Harasymiuk ◽  
Andrzej Rudziński

The use of industrial residues to replace natural resources for the production of building materials is economically and ecologically justified. Fly ash (FA) taken directly from electro-filters is commonly used as a cement replacement material. This is not the case, however, for old dumped fly ash (ODFA) that has been accumulating in on-site waste dumps for decades and currently has no practical use. It causes environmental degradation, which is not fully controlled by the governments of developed countries. The aim of the study was to assess the possibility of using ODFA as a partial replacement for sand in cement composites. ODFA replaced part of the sand mass (20% and 30%) in composites with a limited amount of cement (a cement-saving measure) and sand (saving non-renewable raw material resources). ODFA was activated by the addition of different proportions of hydrated lime, the purposes of which was to trigger a pozzolanic reaction in ODFA. The quantitative composition of the samples was chosen in such a way as to ensure the maximum durability and longevity of composites with a limited amount of cement. The 28-day samples were exposed to seawater attack for 120 days. After this period, the compressive strength of each sample series was determined. The results suggest the possibility of using ODFA with hydrated lime to lay town district road foundations and bike paths of 3.5 to 5 MPA compressive strength. What is more, these composites can be used in very aggressive environments.


Sign in / Sign up

Export Citation Format

Share Document