scholarly journals Optimization of L-lactic Acid Production from Banana Peel by Multiple Parallel Fermentation with Bacillus licheniformis and Aspergillus awamori

2017 ◽  
Vol 23 (1) ◽  
pp. 137-143 ◽  
Author(s):  
Elya Mufidah ◽  
Asep A. Prihanto ◽  
Mamoru Wakayama
2022 ◽  
Vol 16 (1) ◽  
pp. 12
Author(s):  
Nor Atikah Husna Ahmad Nasir ◽  
Nurul Syafiqah Mohd Yaminudin ◽  
Atikah Kamaludin ◽  
Sharir Aizat Kamaruddin ◽  
Siti Nurbalqis Aziman

For ages, pure sugars or edible crops have produced lactic acid. However, a major concern on lactic acid production lies in the cost of the raw materials used. Thus, an alternative to overcome this situation is urgently needed. Characterization of banana peels shows that it contains promising sugar that can be utilized for lactic acid production, which are xylose (0.774 g/L), glucose (0.756 g/L) and fructose (0.532 g/L). Thus, this study aims to screen the potential of banana peel as a substrate by using Rhizopus oryzae through batch fermentation for lactic acid production, as R. oryzae can synthesize lactic acid in low nutrient requirements. Two-level factorial analysis was designed to screen the effects of moisture content (60% and 80%), temperature (27 °C and 40 °C), pH (4.5 and 6.5) and inoculum size (1x104 spores/mL and 1x108 spores/g) on the lactic acid production. Based on the Two-level factorial (2LF) analysis, the highest lactic acid production of 0.0813 g/L was detected at 80 % moisture content, pH 4.5, the temperature of 27 °C and inoculum size of 1x104 spores/g. The findings show that most of the conditions have a significant difference between each other (p<0.05). Therefore, the fermentation of banana peels by R. oryzae could be a promising method to produce a lactic acid concentration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Beatriz Martines de Souza ◽  
Mayara Souza Silva ◽  
Aline Silva Braga ◽  
Patrícia Sanches Kerges Bueno ◽  
Paulo Sergio da Silva Santos ◽  
...  

AbstractThis in vitro study evaluated the protective effect of titanium tetrafluoride (TiF4) varnish and silver diamine fluoride (SDF) solution on the radiation-induced dentin caries. Bovine root dentin samples were irradiated (70 Gy) and treated as follows: (6 h): 4% TiF4 varnish; 5.42% NaF varnish; 30% SDF solution; placebo varnish; or untreated (negative control). Microcosm biofilm was produced from human dental biofilm (from patients with head-neck cancer) mixed with McBain saliva for the first 8 h. After 16 h and from day 2 to day 5, McBain saliva (0.2% sucrose) was replaced daily (37 °C, 5% CO2) (biological triplicate). Demineralization was quantified by transverse microradiography (TMR), while biofilm was analyzed by using viability, colony-forming units (CFU) counting and lactic acid production assays. The data were statistically analyzed by ANOVA (p < 0.05). TiF4 and SDF were able to reduce mineral loss compared to placebo and the negative control. TiF4 and SDF significantly reduced the biofilm viability compared to negative control. TiF4 significantly reduced the CFU count of total microorganism, while only SDF affected total streptococci and mutans streptococci counts. The varnishes induced a reduction in lactic acid production compared to the negative control. TiF4 and SDF may be good alternatives to control the development of radiation-induced dentin caries.


Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e07079
Author(s):  
Joel Romial Ngouénam ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
Pierre Marie Kaktcham ◽  
Rukesh Maharjan ◽  
...  

2021 ◽  
Author(s):  
Xinpeng Zhao ◽  
Zhimin Zhou ◽  
hu luo ◽  
Yanfei Zhang ◽  
Wang Liu ◽  
...  

Combined experiments and density functional theory (DFT) calculations provided insights into the role of the environment-friendly γ-valerolactone (GVL) as a solvent in the hydrothermal conversion of glucose into lactic acid...


2021 ◽  
Vol 323 ◽  
pp. 124618
Author(s):  
Zengshuai Zhang ◽  
Panagiotis Tsapekos ◽  
Merlin Alvarado-Morales ◽  
Irini Angelidaki

2021 ◽  
pp. 124930
Author(s):  
Choi Yan Chai ◽  
Inn Shi Tan ◽  
Henry Chee Yew Foo ◽  
Man Kee La ◽  
Kevin Tian Xiang Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document