Electromyographic Analysis of Muscle Activation Patterns During Bovine Transrectal Palpation and the Development of the Bovine Pregnancy Diagnosis Improvement Exercise Program

2021 ◽  
pp. e20200039
Author(s):  
Annett Annandale ◽  
Geoffrey T. Fosgate ◽  
Carina A. Eksteen ◽  
Wim D.J. Kremer ◽  
Harold G.J. Bok ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
I-Hsuan Chen ◽  
Pei-Jung Liang ◽  
Valeria Jia-Yi Chiu ◽  
Shu-Chun Lee

Recent evidence indicates that turning difficulty may correlate with trunk control; however, surface electromyography has not been used to explore trunk muscle activity during turning after stroke. This study investigated trunk muscle activation patterns during standing turns in healthy controls (HCs) and patients with stroke with turning difficulty (TD) and no TD (NTD). The participants with stroke were divided into two groups according to the 180° turning duration and number of steps to determine the presence of TD. The activation patterns of the bilateral external oblique and erector spinae muscles of all the participants were recorded during 90° standing turns. A total of 14 HCs, 14 patients with TD, and 14 patients with NTD were recruited. The duration and number of steps in the turning of the TD group were greater than those of the HCs, independent of the turning direction. However, the NTD group had a significantly longer turning duration than did the HC group only toward the paretic side. Their performance was similar when turning toward the non-paretic side; this result is consistent with electromyographic findings. Both TD and NTD groups demonstrated increased amplitudes of trunk muscles compared with the HC groups. Their trunk muscles failed to maintain consistent amplitudes during the entire movement of standing turns in the direction that they required more time or steps to turn toward (i.e., turning in either direction for the TD group and turning toward the paretic side for the NTD group). Patients with stroke had augmented activation of trunk muscles during turning. When patients with TD turned toward either direction and when patients with NTD turned toward the paretic side, the flexible adaptations and selective actions of trunk muscles observed in the HCs were absent. Such distinct activation patterns during turning may contribute to poor turning performance and elevate the risk of falling. Our findings provide insights into the contribution and importance of trunk muscles during turning and the association with TD after stroke. These findings may help guide the development of more effective rehabilitation therapies that target specific muscles for those with TD.


2002 ◽  
Vol 30 (6) ◽  
pp. 837-844 ◽  
Author(s):  
Bryan T. Kelly ◽  
Sherry I. Backus ◽  
Russell F. Warren ◽  
Riley J. Williams

Background The phases of the football throw need definition so that muscle activation patterns during the overhead football throw can be fully described. Hypothesis Electromyographic analysis of shoulder musculature can better define muscle activation patterns during the football throw. Study Design Descriptive anatomic study. Methods Videos of 20 elite-level quarterbacks were reviewed to define phases of the overhead football throw; 14 recreational male athletes underwent electromyography and motion analysis testing. Results Four sequential phases of the football throw were consistently observed. Early cocking (49% ± 11% of throw) was initiated at rear foot plant and continued to maximal shoulder abduction and internal rotation. Late cocking (20% ± 6%) started at maximal shoulder abduction and internal rotation and ended with maximal shoulder external rotation. The acceleration phase (15% ± 4%) began with maximal shoulder external rotation and ended with ball release. Follow-through (16% ± 5%) was defined as the phase from ball release to maximal horizontal adduction (across the body). Conclusion The four phases demonstrated little variation in motion analysis and electromyographic activation between subjects and were associated with muscle activation patterns consistent with upper extremity movements. Clinical Relevance A clearer understanding of muscle activation patterns may help to explain patterns of muscle injury and improve rehabilitation protocols in football-throwing athletes.


2008 ◽  
Vol 23 (2) ◽  
pp. 166-176 ◽  
Author(s):  
Minna Hong ◽  
Joel S. Perlmutter ◽  
Gammon M. Earhart

Background. Parkinson disease frequently causes difficulty turning that can lead to falls, loss of independence, and diminished quality of life. Turning in tight spaces, which may be particularly impaired in Parkinson disease, is an essential part of our daily lives, yet a comprehensive analysis of in-place turning has not been published. Objective. This study was conducted to determine whether there are objective differences in turning between people with Parkinson disease and unimpaired people. Methods. In-place turning with kinematics and electromyographic measures was characterized in 11 participants with Parkinson disease and 12 healthy people. Kinematic data were recorded using a 3-dimensional motion capture system in synchrony with electromyographic data from lower extremity muscles as participants turned 180°. Those with Parkinson disease were tested after overnight withdrawal of medication. Results. Both groups used 2 distinct turning strategies. In one, the foot ipsilateral to the turning direction initiated the turn; in the other, the foot contralateral to the turning direction initiated the turn. Kinematic analysis demonstrated a craniocaudal sequence of turning in the unimpaired group, whereas those with Parkinson disease had a simultaneous onset of yaw rotation of the head, trunk, and pelvis. They also took a longer time and more steps to complete turns. Overall, lower extremity muscle activation patterns appeared similar between groups. Conclusion. Differences between the groups were noted for axial control, but lower extremity muscle patterns were similar. This work may provide the foundation for development of new treatments for turning difficulty in Parkinson disease.


Author(s):  
Roland van den Tillaar ◽  
Eirik Lindset Kristiansen ◽  
Stian Larsen

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0–15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Young Ko ◽  
Hayoung Kim ◽  
Joonyoung Jang ◽  
Jun Chang Lee ◽  
Ju Seok Ryu

AbstractAge-related weakness due to atrophy and fatty infiltration in oropharyngeal muscles may be related to dysphagia in older adults. However, little is known about changes in the oropharyngeal muscle activation pattern in older adults. This was a prospective and experimental study. Forty healthy participants (20 older [> 60 years] and 20 young [< 60 years] adults) were enrolled. Six channel surface electrodes were placed over the bilateral suprahyoid (SH), bilateral retrohyoid (RH), thyrohyoid (TH), and sternothyroid (StH) muscles. Electromyography signals were then recorded twice for each patient during swallowing of 2 cc of water, 5 cc of water, and 5 cc of a highly viscous fluid. Latency, duration, and peak amplitude were measured. The activation patterns were the same, in the order of SH, TH, and StH, in both groups. The muscle activation patterns were classified as type I and II; the type I pattern was characterized by a monophasic shape, and the type II comprised a pre-reflex phase and a main phase. The oropharyngeal muscles and SH muscles were found to develop a pre-reflex phase specifically with increasing volume and viscosity of the swallowed fluid. Type I showed a different response to the highly viscous fluid in the older group compared to that in the younger group. However, type II showed concordant changes in the groups. Therefore, healthy older people were found to compensate for swallowing with a pre-reflex phase of muscle activation in response to increased liquid volume and viscosity, to adjust for age-related muscle weakness.


The Knee ◽  
2021 ◽  
Vol 29 ◽  
pp. 500-509
Author(s):  
J.C. Schrijvers ◽  
D. Rutherford ◽  
R. Richards ◽  
J.C. van den Noort ◽  
M. van der Esch ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 448
Author(s):  
Francesco Infarinato ◽  
Paola Romano ◽  
Michela Goffredo ◽  
Marco Ottaviani ◽  
Daniele Galafate ◽  
...  

Background: Overground Robot-Assisted Gait Training (o-RAGT) appears to be a promising stroke rehabilitation in terms of clinical outcomes. The literature on surface ElectroMyoGraphy (sEMG) assessment in o-RAGT is limited. This paper aimed to assess muscle activation patterns with sEMG in subjects subacute post stroke after training with o-RAGT and conventional therapy. Methods: An observational preliminary study was carried out with subjects subacute post stroke who received 15 sessions of o-RAGT (5 sessions/week; 60 min) in combination with conventional therapy. The subjects were assessed with both clinical and instrumental evaluations. Gait kinematics and sEMG data were acquired before (T1) and after (T2) the period of treatment (during ecological gait), and during the first session of o-RAGT (o-RAGT1). An eight-channel wireless sEMG device acquired in sEMG signals. Significant differences in sEMG outcomes were found in the BS of TA between T1 and T2. There were no other significant correlations between the sEMG outcomes and the clinical results between T1 and T2. Conclusions: There were significant functional gains in gait after complex intensive clinical rehabilitation with o-RAGT and conventional therapy. In addition, there was a significant increase in bilateral symmetry of the Tibialis Anterior muscles. At this stage of the signals from the tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF), and biceps femoris caput longus (BF) muscles of each lower extremity. sEMG data processing extracted the Bilateral Symmetry (BS), the Co-Contraction (CC), and the Root Mean Square (RMS) coefficients. Results: Eight of 22 subjects in the subacute stage post stroke agreed to participate in this sEMG study. This subsample demonstrated a significant improvement in the motricity index of the affected lower limb and functional ambulation. The heterogeneity of the subjects’ characteristics and the small number of subjects was associated with high variability research, functional gait recovery was associated with minimal change in muscle activation patterns.


2020 ◽  
Vol 129 (4) ◽  
pp. 934-946
Author(s):  
Katherine Dooley ◽  
Suzanne J. Snodgrass ◽  
Peter Stanwell ◽  
Samantha Birse ◽  
Adrian Schultz ◽  
...  

An emerging method to measure muscle activation patterns is muscle functional magnetic resonance imaging (mfMRI), where preexercise and postexercise muscle metabolism differences indicate spatial muscle activation patterns. We evaluated studies employing mfMRI to determine activation patterns of lumbar or lower limb muscles following exercise in physically active adults. Electronic systematic searches were conducted until March 2020. All studies employing ≥1.5 Tesla MRI scanners to compare spatial muscle activation patterns at the level of or inferior to the first lumbar vertebra in healthy, active adults. Two authors independently assessed study eligibility before appraising methodological quality using a National Institutes of Health assessment tool. Because of heterogeneity, findings were synthesized without meta-analysis. Of the 1,946 studies identified, seven qualified for inclusion and pertained to hamstring ( n = 5), quadriceps ( n = 1) or extrinsic foot ( n = 1) muscles. All included studies controlled for internal validity, with one employing assessor blinding. MRI physics and differing research questions explain study methodology heterogeneity. Significant mfMRI findings were: following Nordic exercise, hamstrings with previous trauma (strain or surgical autograft harvest) demonstrated reduced activation compared with unharmed contralateral muscles, and asymptomatic individuals preferentially activated semitendinosus; greater biceps femoris long head to semitendinosus ratios reported following 45° hip extension over Nordic exercise; greater rectus femoris activation occurred in “flywheel” over barbell squats. mfMRI parameters differ on the basis of individual research questions. Individual muscles show greater activation following specific exercises, suggesting exercise specificity may be important for rehabilitation, although evidence is limited to single cohort studies comparing interlimb differences preexercise versus postexercise.


Sign in / Sign up

Export Citation Format

Share Document