Effect of heat treatment on the wear resistance of cast irons

2016 ◽  
Vol 58 (4) ◽  
pp. 306-311 ◽  
Author(s):  
Enbiya Türedi
1968 ◽  
Vol 10 (5) ◽  
pp. 389-391
Author(s):  
A. N. Volkov ◽  
V. B. Lyadskii ◽  
D. I. Stanchev

Wear ◽  
2011 ◽  
Vol 271 (9-10) ◽  
pp. 1813-1818 ◽  
Author(s):  
E. Albertin ◽  
F. Beneduce ◽  
M. Matsumoto ◽  
I. Teixeira

10.30544/238 ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Kamran Amini ◽  
Amin Akhbarizadeh ◽  
Sirus Javadpour

The deep cryogenic heat treatment is an old and effective heat treatment, performed on steels and cast irons to improve the wear resistance and hardness. This process includes cooling down to the liquid nitrogen temperature, holding the samples at that temperature and heating at the room temperature. The benefits of this process are significant on the ferrous materials, but recently some studies focused on other nonferrous materials. This study attempts to clarify the different behavior of some materials subjected to the deep cryogenic heat treatment, as well as explaining the common theories about the effect of the cryogenic heat treatment on these materials. Results showed that polymers exhibit different behavior regarding to their crystallinity, however the magnesium alloys, titanium alloys and tungsten carbide show a noticeable improvement after the deep cryogenic heat treatment due to their crystal structure.


Alloy Digest ◽  
1979 ◽  
Vol 28 (3) ◽  

Abstract CYCLOPS SCK is a cold-work tool steel with a balanced composition to provide air hardening and an optimum combination of toughness, wear resistance and minimum distortion during heat treatment. Typical applications are shear blades, trimming dies and forming rolls, including grade rolls for cutlery and flatware. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-346. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1976 ◽  
Vol 25 (12) ◽  

Abstract DEWARD is an oil-hardening, non-deforming, manganese die steel that is characterized by uniformity, good machinability and satisfactory performance in service. Its composition permits a relatively low hardening temperature to give minimum distortion after heat treatment and little danger of cracking. It has good wear resistance and gives excellent results when used for all kinds of intricate tools. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-310. Producer or source: AL Tech Specialty Steel Corporation.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 660
Author(s):  
Dariusz Jędrzejczyk ◽  
Elżbieta Szatkowska

The analyzed topic refers to the wear resistance and friction coefficient changes resulting from heat treatment (HT) of a hot-dip zinc coating deposited on steel. The aim of research was to evaluate the coating behavior during dry friction after HT as a result of microstructure changes and increase the coating hardness. The HT parameters should be determined by taking into consideration, on the one hand, coating wear resistance and, on the other hand, its anticorrosion properties. A hot-dip zinc coating was deposited in industrial conditions (according EN ISO 10684) on disc-shaped samples and the chosen bolts. The achieved results were assessed on the basis of tribological tests (T11 pin-on-disc tester, Schatz®Analyse device, Sindelfingen, Germany), microscopic observations (with the use of optical and scanning microscopy), EDS (point and linear) analysis, and microhardness measurements. It is proved that properly applied HT of a hot-dip zinc coating results in changes in the coating’s microstructure, hardness, friction coefficient, and wear resistance.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Alejandro González-Pociño ◽  
Florentino Alvarez-Antolin ◽  
Juan Asensio-Lozano

In this article, the effects of an ionic nitriding treatment are analysed, together with deliberate variation of different thermal parameters associated with the destabilisation of austenite, on erosive wear resistance of white cast irons with 25% Cr. The methodology followed in this research was an experimental design, where six factors were analyzed by performing eight experiments. The thickness of the nitrided layer is much smaller than in white cast iron with lower percentages in Cr, never reaching 20 microns. The nitriding treatment entails considerable softening of the material underneath the nitriding layer. This softening behaviour becomes partially inhibited when the destabilisation temperature of austenite is 1100 °C and dwell times at such temperature are prolonged. This temperature seems to play a significant role in the solubilization of non-equilibrium eutectic carbides, formed during industrial solidification. The nitriding treatment leads to additional hardening, which, in these cases, favours a second destabilisation of austenite, with additional precipitation of secondary carbides and the transformation of retained austenite into martensite. Despite softening of the material, the nitriding treatment, together with air-cooling after destabilisation of the austenite, allows a noticeable increase in resistance to erosive wear.


Sign in / Sign up

Export Citation Format

Share Document