Effects of an electric field applied during the solution heat treatment of the Al–Mg–Si–Cu alloy AA 6111 on the subsequent natural aging kinetics and tensile properties

2006 ◽  
Vol 97 (2) ◽  
pp. 145-149 ◽  
Author(s):  
Kang Jung ◽  
Hans Conrad
2018 ◽  
Vol 941 ◽  
pp. 796-801
Author(s):  
Mehdi Lalpoor ◽  
Tim Vossen ◽  
Michael Xhonneux ◽  
Arne Schlegel

Quench trials were performed on AA6005A and AA6016 alloys to assess the sensitivity of their tensile properties as well as bendability to quench after solution heat treatment. Results indicate that the tensile properties in T4 and in the paint-baked state (2% pre-strain + 185 °C/20 min) are hardly affected by quench rate as long as the exit temperature (Texit) is sufficiently low. The bendability however, appears to be more sensitive to quench rate, and the sensitivity depends on the chemical composition of the alloy. The alloy with a higher excess Si content exhibits higher sensitivity to natural aging which in turn affects the bending and hemming performance of the material. Therefore, it is not only the quench rate which affects the bendability but also the temperature of the material at the end of quench. DSC analysis revealed how cluster formation proceeding the solution heat-treatment (SH) and quench provokes the quench sensitivity.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Ronan Miller Vieira ◽  
Gianni Ferreira Alves Moreira ◽  
André Itman Filho ◽  
Estéfano Aparecido Vieira

This work has focused on the development of a new aluminum alloy containing 4.8 wt% of Cu alloy obtained from recycled aluminium cans designed for thixoforming process. After the step of melting and solidification of the alloy in a metallic permanent mold, samples were solution heat treated at 525°C for times ranging from 2 h to 48 h, quenched in water and followed by natural aging. Results have shown the evolution of hardness so from them solubilization solution heat treatment was chosen for 24 h. The best condition for aging was 190°C during 3 h. With this data pieces were thixoforged at 580°C and 615°C corresponding, respectively, to solid fraction (fs) of 0.8 and 0.6. The optimized T6 temper was applied and tensile tests were performed. The mechanical properties obtained are compatible with those obtained for consolidated alloys processed in semisolid state (SS) and after T6 temper hardness increases from 95 HB to 122 HB and the best results were a tensile strength of 324 MPa ± 10 MPa, yield strength of 257 MPa ± 18 MPa, and an elongation of 7.1%  ±  1%. For alloys designed for thixoforming process, these results are in accordance with what was expected whereas globular microstructure, high ductility, and good performance under cyclic conditions are desirable.


2014 ◽  
Vol 58 ◽  
pp. 426-438 ◽  
Author(s):  
Y. Han ◽  
A.M. Samuel ◽  
H.W. Doty ◽  
S. Valtierra ◽  
F.H. Samuel

2014 ◽  
Vol 875-877 ◽  
pp. 1397-1405 ◽  
Author(s):  
G. Dinesh Babu ◽  
M. Nageswara Rao

Cast aluminum alloy 354 is used extensively for production of critical automobile components, owing to its excellent castability and attractive combination of mechanical properties after heat-treatment. With the advent of higher performance engines, there has been a steady demand to further improve the mechanical behavior of the castings made of the alloy, among others, through improvements in processing. The present study explores the possibility of improving tensile properties of the alloy by adopting certain non-conventional aging treatments. The non-conventional treatments include aging cycles similar to T6I4 and T6I6 referred to in the published literature, artificial aging in two steps instead of in single step and artificial aging preceded by various natural aging times. The results show that none of these non-conventional treatments leads to improvement of all tensile properties compared to the standard T61 treatment. Significant hardening takes place in the alloy due to natural aging. Changing the time of natural aging preceding artificial aging was found to have little effect on tensile properties.


2020 ◽  
Vol 1010 ◽  
pp. 166-171
Author(s):  
Hamidreza Ghandvar ◽  
Wan Famin Faiz ◽  
Tuty Asma Abu Bakar ◽  
Mohd Hasbullah Idris

The effect of extrusion ratios and solution heat treatment on microstructure and tensile properties of extruded Al-15%Mg2Si-1.0%Gd composite was investigated. The as-cast composite was hot extruded using three different dies and solution heat treated. After conducting heat treatment on extruded samples, microstructure alteration was examined using scanning electron microscope (SEM). Furthermore, mechanical properties of the composites were studied with tensile test. The results demonstrated that extruded and heat treated composite possesses higher strength and ductility compared to as-extruded composites. It was also found that the extrusion and heat treatment processes altered the morphology of primary Mg2Si particles as well as reduction in their size especially when the extrusion ratio increases. Fracture surface examination revealed a transition from ductile fracture in as-extruded samples to more ductile fracture in extruded and heat treated ones. This can be attributed to the change in size and morphology of primary Mg2Si particles as well as fragmentation of Gd intermetallic compounds.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
A. M. Samuel ◽  
H. W. Doty ◽  
S. Valtierra ◽  
F. H. Samuel

The present study was performed on low magnesium A413.0 type alloys. The results show that strontium (Sr) is mainly concentrated in the silicon particles. Overmodification occurs when Sr precipitates in the form of Al2SrSi2, which takes place over a wide range of temperatures. The first peak occurs following the precipitation ofα-Al, the second peak is merged with the precipitation of eutectic silicon (Si), and the third peak is a posteutectic reaction. Introduction of phosphorus (P) to Sr-modified alloys leads to the formation of (Al,P,Sr)2O5compound, which reduces the modification effectiveness of Sr. Therefore, in the presence of P, the amount of added Sr should exceed 200 ppm. For the same levels of P, the tensile parameters of well modified alloys (233 ppm Sr) are relatively higher than those partially modified with Sr (about 60 ppm Sr) containing the same amount of P. During solution heat treatment, coarsening of the eutectic Si particles occurs by the growth of some particles at the expense of the dissolution of the smaller ones, as well as by the collision of nearby particles.


2013 ◽  
Vol 765 ◽  
pp. 496-500 ◽  
Author(s):  
Dawid Kapinos ◽  
Marcin Szymanek ◽  
Bogusław Augustyn ◽  
Maciej Gawlik

The article presents the change in mechanical properties of AlZn9Mg2.5Cu1.8 alloy resulting from the process of solution heat treatment and aging. The heat treatment was performed on a unique UMSA (Universal Metallurgical Simulator and Analyzer) device. The aim of the study was to determine optimum heat treatment parameters for the tested alloy of ultrafine grain structure obtained by Rapid Solidification (RS). To achieve this purpose, heat treatment to the T4 and T6 condition was carried out. The solution heat treatment was carried out at a constant temperature of 460 °C for 2 hours, while the time - temperature parameters of the aging process varied. The treatment undertaken resulted in improved mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document