scholarly journals Effect of Sr-P Interaction on the Microstructure and Tensile Properties of A413.0 Type Alloys

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
A. M. Samuel ◽  
H. W. Doty ◽  
S. Valtierra ◽  
F. H. Samuel

The present study was performed on low magnesium A413.0 type alloys. The results show that strontium (Sr) is mainly concentrated in the silicon particles. Overmodification occurs when Sr precipitates in the form of Al2SrSi2, which takes place over a wide range of temperatures. The first peak occurs following the precipitation ofα-Al, the second peak is merged with the precipitation of eutectic silicon (Si), and the third peak is a posteutectic reaction. Introduction of phosphorus (P) to Sr-modified alloys leads to the formation of (Al,P,Sr)2O5compound, which reduces the modification effectiveness of Sr. Therefore, in the presence of P, the amount of added Sr should exceed 200 ppm. For the same levels of P, the tensile parameters of well modified alloys (233 ppm Sr) are relatively higher than those partially modified with Sr (about 60 ppm Sr) containing the same amount of P. During solution heat treatment, coarsening of the eutectic Si particles occurs by the growth of some particles at the expense of the dissolution of the smaller ones, as well as by the collision of nearby particles.

2021 ◽  
Vol 58 (12) ◽  
pp. 763-780
Author(s):  
P. Zhuang ◽  
H. Shi ◽  
Z. Zhang ◽  
R. Chai ◽  
J. Zan ◽  
...  

Abstract In this work, a solution heat treatment of Al-Si-Mg-Cu casting alloy was analyzed. A new short solution heat treatment (SHT) with only 60 min has been allowed. The results revealed that this short SHT enables the improvement of the dendritic structure and the spheroidization of the eutectic silicon particles. Furthermore, the alloy showed improved mechanical properties when compared to the same alloy subjected to a longer SHT of 4 h. It was observed that increasing the SHT temperature can accelerate the dissolution and homogenization of the silicon particles and intermetallic precipitates in the matrix.


2014 ◽  
Vol 58 ◽  
pp. 426-438 ◽  
Author(s):  
Y. Han ◽  
A.M. Samuel ◽  
H.W. Doty ◽  
S. Valtierra ◽  
F.H. Samuel

2016 ◽  
Vol 850 ◽  
pp. 502-510
Author(s):  
Hai Jun Liu ◽  
Lie Jun Li ◽  
Jian Wei Niu ◽  
Ji Xiang Gao ◽  
Xue Wen Chen

The effect of local pressurization on mechanical properties and fracture behavior of indirect squeeze-cast A354 alloy has been investigated. As compared to conventional process, the porosity and shrinkage cavity for heavy sectioned squeeze castings were improved by the indirect squeeze casting, while its tensile properties were inferior to other parts of the casting. That is mainly due to that inhomogeneous eutectic Si particles within strip, angular and fragment shapes distribute in bulky α-Al cells, which is caused by slower solidification rate. After T6 treatment, the fragmentation and spheroidization of the eutectic silicon happened. Under this situation, the effect of fragmentation on α-Al matrix reduced. Tensile properties of the casting (both local pressurization part and non-local pressurization part) were enhanced greatly, by 36.8% and 25.4%, respectively. Fracture analysis results show that the type of fracture morphology is changed from mixed mode of brittle cleavage and ductile to ductile mode after T6-treatment.


2020 ◽  
Vol 1010 ◽  
pp. 166-171
Author(s):  
Hamidreza Ghandvar ◽  
Wan Famin Faiz ◽  
Tuty Asma Abu Bakar ◽  
Mohd Hasbullah Idris

The effect of extrusion ratios and solution heat treatment on microstructure and tensile properties of extruded Al-15%Mg2Si-1.0%Gd composite was investigated. The as-cast composite was hot extruded using three different dies and solution heat treated. After conducting heat treatment on extruded samples, microstructure alteration was examined using scanning electron microscope (SEM). Furthermore, mechanical properties of the composites were studied with tensile test. The results demonstrated that extruded and heat treated composite possesses higher strength and ductility compared to as-extruded composites. It was also found that the extrusion and heat treatment processes altered the morphology of primary Mg2Si particles as well as reduction in their size especially when the extrusion ratio increases. Fracture surface examination revealed a transition from ductile fracture in as-extruded samples to more ductile fracture in extruded and heat treated ones. This can be attributed to the change in size and morphology of primary Mg2Si particles as well as fragmentation of Gd intermetallic compounds.


2012 ◽  
Vol 192-193 ◽  
pp. 533-538 ◽  
Author(s):  
Levy Chauke ◽  
Heinrich Möller ◽  
Ulyate Andries Curle ◽  
Gonasagren Govender

Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356 brake callipers to the automotive industry. This research studied A356 brake callipers heat treated on the industrial scale with particular emphasis on the resulting microstructure, hardness and tensile properties. The eutectic Si-particle spheroidisation after solution heat treatment was achieved and observed with optical microscopy. A hardness increase from 64 to 100 Vickers was achieved from the as-cast condition to the industrially heat treated T6 condition. The heat treatment caused no significant variation in hardness and tensile properties from brake callipers within the same batch or from different batches. The yield and ultimate strengths of the industrial heat treated brake callipers were lower compared to the laboratory scale heat treatment properties, while the ductility increased, mainly due to quenching effects. Even though the industrial heat treated A356 brake callipers resulted in yield and ultimate tensile strengths lower than those achieved on a laboratory scale, they still exceeded the minimum specifications for gravity die cast A356 brake callipers.


2016 ◽  
Vol 857 ◽  
pp. 256-260
Author(s):  
Chung Seok Kim ◽  
Jin Woo Jo ◽  
Hak Min Lee

The effects of solution heat treatment of Al6Si2Cu aluminum alloy on incipient melting of θ-Al2Cu phase have been investigated. Solution heat treatments, in this study, are applied to improve of mechanical properties through a single-step solution heat treatment. The microstructure of as-cast specimen represents a typical dendrite structure having a secondary dendrite arm spacing of 37um. In addition to the Al matrix, a large amount of coarsen eutectic Si, θ-Al2Cu intermetallic phases and Fe-rich phases are identified. As the solution temperature increases, the Vickers's hardness increases up to 510°C and thereafter hardness decreases at the temperature of 520°C and 530°C. This hardness behavior may closely related with microstructural evolution such as solubility of alloying elements up to 510°C and also melting of θ-Al2Cu intermetallic phases over 510°C in this study. Consequentially, the optimal single-step solution heat treatment temperature should be 510°C to improve mechanical property.


This paper reflects on the influence of T6 solution heat treatment on A413 and its alloys. Heat treatment carried out at a particular temperature, time and methods are to bring changes in mechanical properties of the material. T6 solution heat treatment performed by heating the specimens at 525 0C for a period of 8 hours and then quenched in water at 65 0C is considered followed by artificial aging is done at 155 0C for 8 hours in hot air oven. Vickers micro-hardness tester used is to determine the hardness of specimen and UTM-2T was used to determine the tensile properties of the specimen. From the above investigation it is observed that the hardness of the A413 has significantly improved with T6 heat treatment process and also found that the tensile properties of the A413 improved when heat treated of the specimen.


Sign in / Sign up

Export Citation Format

Share Document