The Simultaneous Effect of Extrusion Ratio and Solution Heat Treatment on the Microstructure and Tensile Properties of Extruded Al-15%Mg2Si- 1.0%Gd Composite

2020 ◽  
Vol 1010 ◽  
pp. 166-171
Author(s):  
Hamidreza Ghandvar ◽  
Wan Famin Faiz ◽  
Tuty Asma Abu Bakar ◽  
Mohd Hasbullah Idris

The effect of extrusion ratios and solution heat treatment on microstructure and tensile properties of extruded Al-15%Mg2Si-1.0%Gd composite was investigated. The as-cast composite was hot extruded using three different dies and solution heat treated. After conducting heat treatment on extruded samples, microstructure alteration was examined using scanning electron microscope (SEM). Furthermore, mechanical properties of the composites were studied with tensile test. The results demonstrated that extruded and heat treated composite possesses higher strength and ductility compared to as-extruded composites. It was also found that the extrusion and heat treatment processes altered the morphology of primary Mg2Si particles as well as reduction in their size especially when the extrusion ratio increases. Fracture surface examination revealed a transition from ductile fracture in as-extruded samples to more ductile fracture in extruded and heat treated ones. This can be attributed to the change in size and morphology of primary Mg2Si particles as well as fragmentation of Gd intermetallic compounds.

This paper reflects on the influence of T6 solution heat treatment on A413 and its alloys. Heat treatment carried out at a particular temperature, time and methods are to bring changes in mechanical properties of the material. T6 solution heat treatment performed by heating the specimens at 525 0C for a period of 8 hours and then quenched in water at 65 0C is considered followed by artificial aging is done at 155 0C for 8 hours in hot air oven. Vickers micro-hardness tester used is to determine the hardness of specimen and UTM-2T was used to determine the tensile properties of the specimen. From the above investigation it is observed that the hardness of the A413 has significantly improved with T6 heat treatment process and also found that the tensile properties of the A413 improved when heat treated of the specimen.


2012 ◽  
Vol 271-272 ◽  
pp. 17-20
Author(s):  
Shu Yan Wu ◽  
Ze Sheng Ji ◽  
Chun Ying Tian ◽  
Ming Zhong Wu

This work is to study the influence of heat treatment on microstrudture and mechanical properties of AZ31B magnesium alloy prepared by solid -state recycling. AZ31B magnesium alloy chips were recycled by hot extruding. Three different heat treatments were conducted for recycled alloy. Mechanical properties and microstructure of the recycled specimen and heat treated specimen were investigated. 300°C×2h annealing specimen exhibits finer grain due to static recrystallization, and microstructure of 400°C×2h annealing specimen becomes more coarse. 300°C×2h annealing treatment improves obviously strength and ductility of recycled alloy. Ultimate tensile strength of alloy decreases and elongation to failure increases after 400°C×2h annealing. Grain size, dislocation density and bonding of chips have an effect on the elongation of recycled materials. 190°C×8h ageing has no influence on microstructure and mechanical properties of recycled alloy.


2014 ◽  
Vol 58 ◽  
pp. 426-438 ◽  
Author(s):  
Y. Han ◽  
A.M. Samuel ◽  
H.W. Doty ◽  
S. Valtierra ◽  
F.H. Samuel

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Vlatka Jirouš-Rajković ◽  
Josip Miklečić

Heat treatment is a method of wood modification with increasing market acceptance in Europe. The major patented European commercial heat treatment processes have trade names ThermoWood, Platowood, Retiwood, Le Bois Perdure, and Oil-Heat-Treated Wood (OHT). To what extent modification of wood affects the resistance of wood to weathering is also an important aspect for wood applications, especially where appearance is important. Unfortunately, heat-treated wood has poor resistance to weathering, and surface treatment with coatings is required for both protection and aesthetic reasons. As a substrate for coating, heat-treated wood has altered characteristics such as lower hygroscopicity and liquid water uptake and changed acidity, wettability, surface free energy, and anatomical microstructure. Various wood species, heat treatment method, treatment intensity, and treatment conditions exhibited a different extent of changes in wood properties. These altered properties could affect coating performance on heat-treated wood. The reported changes in acidity and in surface energy due to heat treatments are inconsistent with one another depending on wood species and temperature of the treatments. This paper gives an overview of the research results with regards to properties of heat-treated wood that can affect coating performance and weathering of uncoated and coated heat-treated wood.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
A. M. Samuel ◽  
H. W. Doty ◽  
S. Valtierra ◽  
F. H. Samuel

The present study was performed on low magnesium A413.0 type alloys. The results show that strontium (Sr) is mainly concentrated in the silicon particles. Overmodification occurs when Sr precipitates in the form of Al2SrSi2, which takes place over a wide range of temperatures. The first peak occurs following the precipitation ofα-Al, the second peak is merged with the precipitation of eutectic silicon (Si), and the third peak is a posteutectic reaction. Introduction of phosphorus (P) to Sr-modified alloys leads to the formation of (Al,P,Sr)2O5compound, which reduces the modification effectiveness of Sr. Therefore, in the presence of P, the amount of added Sr should exceed 200 ppm. For the same levels of P, the tensile parameters of well modified alloys (233 ppm Sr) are relatively higher than those partially modified with Sr (about 60 ppm Sr) containing the same amount of P. During solution heat treatment, coarsening of the eutectic Si particles occurs by the growth of some particles at the expense of the dissolution of the smaller ones, as well as by the collision of nearby particles.


2012 ◽  
Vol 192-193 ◽  
pp. 533-538 ◽  
Author(s):  
Levy Chauke ◽  
Heinrich Möller ◽  
Ulyate Andries Curle ◽  
Gonasagren Govender

Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356 brake callipers to the automotive industry. This research studied A356 brake callipers heat treated on the industrial scale with particular emphasis on the resulting microstructure, hardness and tensile properties. The eutectic Si-particle spheroidisation after solution heat treatment was achieved and observed with optical microscopy. A hardness increase from 64 to 100 Vickers was achieved from the as-cast condition to the industrially heat treated T6 condition. The heat treatment caused no significant variation in hardness and tensile properties from brake callipers within the same batch or from different batches. The yield and ultimate strengths of the industrial heat treated brake callipers were lower compared to the laboratory scale heat treatment properties, while the ductility increased, mainly due to quenching effects. Even though the industrial heat treated A356 brake callipers resulted in yield and ultimate tensile strengths lower than those achieved on a laboratory scale, they still exceeded the minimum specifications for gravity die cast A356 brake callipers.


2012 ◽  
Vol 05 ◽  
pp. 752-759 ◽  
Author(s):  
R. DEHGHAN ◽  
S. A. SEYYED EBRAHIMI ◽  
H. R. KOOHDAR

In this research the influence of dynamic CH 4 heat treatment on Sr -hexaferrite has been investigated. With the gas heat treatment, the phase composition, particles size and the morphology of Sr -hexaferrite change significantly. Due to this, the hard magnetic nature of the material changes from hard to soft. The strontium hexaferrite powder was prepared by conventional route with calcination of the mixture of strontium carbonate and hematite at 1100°C for 1 hour. Then the resultant Sr -hexaferrite was isothermally heat treated in methane dynamic atmosphere at various temperatures and gas flows for different times. The rate of heating and cooling were 10°C/min. The optimum conditions were obtained at 950°C and 15CC/min flow for 0.5 hour. The effects of gas heat treatment on the phase composition and the particles size and morphology were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Vibration Sample Magnetometery (VSM) techniques. The results show the decomposition of Sr -hexaferrite and reduction of the resultant hematite mainly to iron. The crystallite size of the resultant iron was also measured below 50nm.


Sign in / Sign up

Export Citation Format

Share Document