The Effect of Welding Speed on the Weld Seam Profile in MAG and TIG/MAG Hybrid Arc Welding

2017 ◽  
Vol 54 (4) ◽  
pp. 225-240
Author(s):  
A. Uzun
Keyword(s):  
2011 ◽  
Vol 216 ◽  
pp. 188-193 ◽  
Author(s):  
Kuan Fang He ◽  
Xue Jun Li ◽  
Ji Gang Wu ◽  
Qi Li

Based on analysis of submerged arc welding arc heat source model and droplet heat inputting uniform distribution, ANSYS parametric design language was applied to develop sub-program for loading moving heat sources. ANSYS software was used to calculate the temperature fields. In the same welding conditions, weld seam width and depth value of experiments and simulation are contrasted, the biggest error was below 5%. The influence of different welding speed to molten pool temperature of twin-arc submerged arc welding was analyzed, it obtained results that temperature field distribution of twin-arc submerged arc welding changes more gentle than single arc submerged arc welding in condition of increased welding speed, it was helpful to the further analysis of molten pool dynamic behavior and weld seam shape factors of twin-arc high speed submerged arc welding.


Author(s):  
Chaowen Li ◽  
Shuangjian Chen ◽  
Kun Yu ◽  
Zhijun Li

GH3535 supperalloy, whose grade of ASME is UNS N10003, is currently considered as a candidate material for solid-fuel and fluid-fuel molten salt reactor in china. During the development of procedures for welding GH3535 superalloy, consideration should always be given to the possibility that repair welding may be necessary. This paper presents weld repairs of GH3535 alloy rolled plates using gas tungsten arc welding with filler metal. The purpose of this work is to evaluate the low heat input process for weld repair of GH3535 alloy plates about the microstructure features and mechanical properties. The results demonstrated that sound joints without defects could be obtained after weld repairs. Due to repair thermal cycles on the original weld seam, the size of carbide precipitate became large, but repair welding is found to cause no decrease in short-term time-independent strength.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1659
Author(s):  
Sasan Sattarpanah Karganroudi ◽  
Mahmoud Moradi ◽  
Milad Aghaee Attar ◽  
Seyed Alireza Rasouli ◽  
Majid Ghoreishi ◽  
...  

This study involves the validating of thermal analysis during TIG Arc welding of 1.4418 steel using finite element analyses (FEA) with experimental approaches. 3D heat transfer simulation of 1.4418 stainless steel TIG arc welding is implemented using ABAQUS software (6.14, ABAQUS Inc., Johnston, RI, USA), based on non-uniform Goldak’s Gaussian heat flux distribution, using additional DFLUX subroutine written in the FORTRAN (Formula Translation). The influences of the arc current and welding speed on the heat flux density, weld bead geometry, and temperature distribution at the transverse direction are analyzed by response surface methodology (RSM). Validating numerical simulation with experimental dimensions of weld bead geometry consists of width and depth of penetration with an average of 10% deviation has been performed. Results reveal that the suggested numerical model would be appropriate for the TIG arc welding process. According to the results, as the welding speed increases, the residence time of arc shortens correspondingly, bead width and depth of penetration decrease subsequently, whilst simultaneously, the current has the reverse effect. Finally, multi-objective optimization of the process is applied by Derringer’s desirability technique to achieve the proper weld. The optimum condition is obtained with 2.7 mm/s scanning speed and 120 A current to achieve full penetration weld with minimum fusion zone (FZ) and heat-affected zone (HAZ) width.


2021 ◽  
Vol 58 (6) ◽  
pp. 332-353
Author(s):  
A. Kisasoz ◽  
M. Tümer ◽  
A. Karaaslan

Abstract In this study, the effect of multipass welding on the microstructure, mechanical and corrosion properties of the UNS 32205 duplex stainless steels (DSS) is investigated. The UNS 32205 DSS is welded in 3 or 7 passes by flux-cored arc welding (FCAW) using E2209 T1 – 1/4 flux cored wire. The weldments are characterized by light optical microscopy (LOM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Feritscope analysis, Charpy impact tests and electrochemical corrosion tests. The results suggest that the multipass FCAW process induces the formation of γ2 in the weld seam. The mechanical and the corrosion properties of the weld joints are affected by the heat input variation and the phase transformations. Especially, the formation of the γ2 in the weld seam results in a decrease in the corrosion resistance of the joint samples.


2020 ◽  
Vol 10 (8) ◽  
pp. 2838
Author(s):  
Wenbo Ma ◽  
Heng Zhang ◽  
Wei Zhu ◽  
Fu Xu ◽  
Caiqian Yang

Residual stress is inevitable during welding, which will greatly affect the reliability of the structure. The purpose of this paper was to study the residual stress of the hoop structure caused by the cooling shrinkage of the weld when the outer cylinder was wrapped and welded under the condition of the existing inner cylinder. In this paper, the “method of killing activating elements” of ANSYS was used to simulate the three-dimensional finite element of the hoop structure. In the case of applying interlayer friction, the welding-forming process and welding circumferential residual stress of the hoop structure were analyzed. The blind hole method was used to test the residual stress distribution of the hoop structure, and the test results were compared with the finite element simulation results to verify the reliability of the simulation calculation method and the reliability of the calculation results. Then, the influence factors of the maximum welding residual stress of the hoop structure were studied. The results show that the maximum residual stress of the outer plate surface of the hoop structure decreases with the increase of the welding energy, the thickness of the laminate, the width of the weld seam, the welding speed, and the radius of the container. Based on the results of numerical simulation, the ternary first-order equations of the maximum residual stress of the hoop structure with respect to the welding speed, the thickness of the laminate, and the width of the weld seam were established. Then, the optimal welding parameters were obtained by optimizing the equations, which provided an important basis for the safe use and optimal design of the welding hoop structure.


2012 ◽  
Vol 562-564 ◽  
pp. 573-577
Author(s):  
Xiao Dong Hu ◽  
Yong Zhang ◽  
Jian Tao Lv ◽  
Sen Zhang

The butt weld of Q345R with the thickness of 40mm has been manufactured with the submerged-arc welding (SAW). The mechanical properties of the weld seam have been tested and the metallurgical structures have been analyzed. Conclusions have been obtained as follows: the metallurgical structure of multi-layer butt weld is much more complicated than the monolayer ones; only the last weld layer has the obvious zones of weld zone, heat-affected zone (HAZ) and fusion area; the weld zone and the fusion area will be heat treated with the next layers weld finished; the mechanical property of the multi-layer butt weld is much better than the monolayer weld determined by the corresponding organization.


Sign in / Sign up

Export Citation Format

Share Document