Next-Generation Optical Probing Tools for Design Debug of High Speed Integrated Circuits

Author(s):  
William Lo ◽  
Kenneth Wilsher ◽  
Richard Malinsky ◽  
Nina Boiadjieva ◽  
Chun-Cheng Tsao ◽  
...  

Abstract Time-resolved photon emission (TRPE) results, obtained using a new superconducting, single-photon detector (SSPD) are reported. Detection efficiency (DE) for large area detectors has recently been improved by >100x without affecting SSPDs inherently low jitter (≈30 ps) and low dark-count rate (<30 s-1). TRPE measurements taken from a 0.13 μm geometry CMOS IC are presented. A single laser, time-differential probing scheme that is being investigated for next-generation laser voltage probing (LVP) is also discussed. This new scheme is designed to have shot-noise-limited performance, allowing signals as small as 100 parts-per-million (ppm) to be reliably measured.

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1663
Author(s):  
Kwang-Yong Jeong ◽  
Seong Won Lee ◽  
Jae-Hyuck Choi ◽  
Jae-Pil So ◽  
Hong-Gyu Park

Efficient integration of a single-photon emitter with an optical waveguide is essential for quantum integrated circuits. In this study, we integrated a single-photon emitter in a hexagonal boron nitride (h-BN) flake with a Ag plasmonic waveguide and measured its optical properties at room temperature. First, we performed numerical simulations to calculate the efficiency of light coupling from the emitter to the Ag plasmonic waveguide, depending on the position and polarization of the emitter. In the experiment, we placed a Ag nanowire, which acted as the plasmonic waveguide, near the defect of the h-BN, which acted as the single-photon emitter. The position and direction of the nanowire were precisely controlled using a stamping method. Our time-resolved photoluminescence measurement showed that the single-photon emission from the h-BN flake was enhanced to almost twice the intensity as a result of the coupling with the Ag nanowire. We expect these results to pave the way for the practical implementation of on-chip nanoscale quantum plasmonic integrated circuits.


Author(s):  
Franco Stellari ◽  
Alan J. Weger ◽  
Seongwon Kim ◽  
Dzmitry Maliuk ◽  
Peilin Song ◽  
...  

Abstract In this paper, we present a Superconducting Nanowire Single Photon Detector (SnSPD) system and its application to ultra low voltage Time-Resolved Emission (TRE) measurements (also known as Picosecond Imaging Circuit Analysis, PICA) of scaled VLSI circuits. The 9 µm-diameter detector is housed in a closed loop cryostat and fiber coupled to an existing Emiscope III tool for collecting spontaneous emission light from the backside of integrated circuits (ICs) down to a world record 0.5 V supply voltage in a few minutes.


Author(s):  
Andrea Bahgat Shehata ◽  
Franco Stellari ◽  
Alan Weger ◽  
Peilin Song ◽  
Vikas Anant ◽  
...  

Abstract This work presents a comparison of two generations of Superconducting nanowire Single-Photon Detector (SnSPD) prototypes used for Time-Resolved Emission (TRE) measurements from VLSI chips. The performance of the systems is compared in order to understand the figures of merit that a single-photon detector should have to enable the acquisition of time resolved emission waveforms for ultra-low voltage applications. We will show that measurements down to a new World record low 0.4 V supply voltage were made possible by a careful optimization of the detector front-end electronics. We also characterized the emission from devices with different threshold voltages in order to understand how the emission contributions depend on this parameter and how this affects the resulting waveform SNR.


2018 ◽  
Vol 26 (22) ◽  
pp. 29045 ◽  
Author(s):  
Shigeyuki Miyajima ◽  
Masahiro Yabuno ◽  
Shigehito Miki ◽  
Taro Yamashita ◽  
Hirotaka Terai

2013 ◽  
Vol 21 (22) ◽  
pp. 27177 ◽  
Author(s):  
Taro Yamashita ◽  
Shigehito Miki ◽  
Hirotaka Terai ◽  
Zhen Wang

Sign in / Sign up

Export Citation Format

Share Document