Investigation of Passivation Damage from the Backside

Author(s):  
Sam Subramanian ◽  
Ed Widener ◽  
Tony Chrastecky ◽  
Darryl Jones ◽  
Bill W. Jones ◽  
...  

Abstract Passivation damage, a common failure mode in microelectronics circuitry, can be easily identified by optical inspection in the form of a local 'discoloration' after exposing the die to a chemical that would penetrate through the crack and attacks metal lines. Unfortunately, this process destroys evidence of what damaged the passivation, since it attacks the damaged region. As a result, in many cases, the mechanism by which the passivation damage occurred is unclear. This problem is addressed in this paper by a procedure to examine passivation damage by transmission electron microscopy (TEM) of a cross-section sample prepared from the backside and without exposing the die from the top side. The backside approach was successfully used to assign the root cause of the passivation damage to packaging process. A topside approach to characterize the passivation damaged region can result in destruction of evidence at the defect location.

1986 ◽  
Vol 77 ◽  
Author(s):  
D. J. Eaglesham ◽  
C. J. D. Hetherington ◽  
C. J. Humphreys

ABSTRACTThe use of a cleaved 90 degree wedge as a cross section sample for transmission electron microscopy allows the composition of III/V semiconductor alloys to be measured by studying the thickness fringes of the on-axis [010] bright field image. The effect is explained in terms of the incident electron Bloch states and is illustrated by reference to GaAs/AlGaAs. The technique has an accuracy of about 5% and a spatial resolution of a few Å. The range of materials that can be analysed in this way is discussed.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


2001 ◽  
Vol 78-79 ◽  
pp. 197-204
Author(s):  
Daisuke Takeuchi ◽  
Hideyuki Watanabe ◽  
Sadanori Yamanaka ◽  
Hidetaka Sawada ◽  
Hideki Ichinose ◽  
...  

2000 ◽  
Vol 623 ◽  
Author(s):  
N.D. Zakharov ◽  
A.R. James ◽  
A. Pignolet ◽  
S. Senz ◽  
D. Hesse

AbstractEpitaxial, ferroelectric Ba2Bi4Ti5O18 films grown on LaNiO3/CeO2/ZrO2:Y2O3 epitaxial layers on Si(100) are investigated by cross-section high-resolution transmission electron microscopy (HRTEM). The films are perfectly oriented and consist of well-developed grains of rectangular shape. The grain boundaries are strained and contain many defects, especially a new type of defect, which can be described as a staircase formed by repeated lattice shifts of Δ ∼ c/12 ∼ 4.2 Å in the [001] direction. This repeated shift results in seemingly bent ribbons of stacked Bi2O2 planes, involving, however, individual Bi2O2 planes which remain strongly parallel to the (001) plane. These defects contain an excess of bismuth. Other defects found in the grain interior include mistakes in the stacking sequence originating from the presence of single, well-oriented, non-stoichionietric layers intergrown with the stoichiometric Ba2Bi4Ti5O18 film matrix.


1990 ◽  
Vol 201 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
K. Radermacher ◽  
P. Fichtner ◽  
W. Jăger ◽  
...  

AbstractThe coarsening of CoSi2 precipitates and the microstructural evolution of (111) Si implanted with 200 keV Co+ ions at 350°C and fluences of 1×1016cm−2 and 6×1016cm−2 were investigated as a function of depth, annealing temperature and annealing time using Rutherford Backscattering Spectroscopy (RBS) and Transmission Electron Microscopy (TEM). After annealing cross-section TEM micrographs show a layered array of platelet-shaped precipitates with preferred facets on {111} planes. The fraction of Co-atoms, that were redistributed during the different annealing temperatures and times, has been used to determine an activation energy for the precipitate coarsening. By applying the Meechan-Brinkman and the change-of-slope methods, we obtained activation energies in the range of 3.2 – 3.6 eV.


2017 ◽  
Vol 897 ◽  
pp. 173-176 ◽  
Author(s):  
Takahiro Sato ◽  
Yuya Suzuki ◽  
Hiroyuki Ito ◽  
Toshiyuki Isshiki ◽  
Kuniyasu Nakamura

The recently developed multi directional scanning transmission electron microscopy (MD-STEM) technique has been applied to exactly determine the Burgers vector (b) and dislocation vector (u) of a threading mixed dislocation in a silicon carbide (SiC) as-epitaxial wafer. This technique utilizes repeated focused ion beam (FIB) milling and STEM observation of the same dislocation from three orthogonal directions (cross-section, plan-view, cross-section). Cross section STEM observation in the [1-100] viewing direction showed that the burgers vector have a and c components. Subsequent plan view STEM observation in the [000-1] direction indicated that the b=[u -2uuw] (u≠0 and w≠0). Final cross section STEM observation in the [11-20] direction confirmed that the dislocation was an extended dislocation, with the Burgers vector experimentally found to be b = [1-210]a/3 + [0001]c which decomposes into two partial dislocations of bp1 = [0-110]a/3 + [0001]c/2 and bp2 = [1-100]a/3 + [0001]c/2. The dislocation vector u is [-12-10]a/3 + [0001]c. This technique is an effective method to analyze the dislocation characteristics of power electronics devices.


Sign in / Sign up

Export Citation Format

Share Document