A New Method of Wafer Level Plan View TEM Sample Preparation by DualBeam

Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.

1991 ◽  
Vol 235 ◽  
Author(s):  
Yung-Jen Lin ◽  
Ming-Deng Shieh ◽  
Chiapying Lee ◽  
Tri-Rung Yew

ABSTRACTSilicon epitaxial growth on silicon wafers were investigated by using plasma enhanced chemical vapor deposition from SiH4/He/H2. The epitaxial layers were growm at temperatures of 350°C or lower. The base pressure of the chamber was greater than 2 × 10−5 Torr. Prior to epitaxial growth, the wafer was in-situ cleaned by H2 baking for 30 min. The epi/substrate interface and epitaxial layers were observed by cross-sectional transmission electron microscopy (XTEM). Finally, the influence of the ex-situ and in-situ cleaning processes on the qualities of the interface and epitaxial layers was discussed in detail.


1993 ◽  
Vol 313 ◽  
Author(s):  
I. Hashim ◽  
H.A. Atwater ◽  
Thomas J. Watson

ABSTRACTWe have investigated structural and magnetic properties of epitaxial Ni80Fe20 films grown on relaxed epitaxial Cu/Si (001) films. The crystallographic texture of these films was analyzed in situ by reflection high energy electron diffraction (RHEED), and ex situ by x-ray diffraction and cross-sectional transmission electron Microscopy (XTEM). In particular, RHEED intensities were recorded during epitaxial growth, and intensity profiles across Bragg rods were used to calculate the surface lattice constant, and hence, find the critical epitaxial thickness for which Ni80Fe20 grows pseudomorphically on Cu (100). XTEM analysis indicated that the epitaxial films had atomically-abrupt interfaces which was not the case for polycrystalline Cu and Ni80Fe20 film interfaces. The Magnetic properties of these epitaxial films were Measured in situ using Magneto-optic Kerr effect magnetometry and were compared with those of polycrystalline films grown on SiO2/Si. Large Hc (∼ 35 Oe) was observed for epitaxial Ni80Fe20 films less than 3.0 nm thick whereas for increasing thickness, Hc decreased approximately monotonically to a few Oersteds. Correlations were made between magnetic properties of these epitaxial films, the strain in the film and the interface roughness obtained from XTEM analysis.


1992 ◽  
Vol 280 ◽  
Author(s):  
I. Hashim ◽  
B. Park ◽  
H. A. Atwater

ABSTRACTEpitaxial Cu thin films have been grown on H-terminated Si(OOl) substrates at room temperature by D.C. ion-beam sputter deposition in ultrahigh vacuum. The development of orientation and microstructure during epitaxial growth from the initial stages of Cu growth up to Cu thicknesses of few hundred nm has been investigated. Analysis by in-situ reflection high energy electron diffraction, thin film x-ray diffraction, and plan-view and cross-sectional transmission electron microscopy indicates that the films are well textured with Cu(001)∥ Si(001) and Cu[100]∥ Si[110]. Interestingly, it is found that a distribution of orientations occurs at the early stages of Cu epitaxy on Si(001) surface, and that a (001) texture emerges gradually with increasing Cu thickness. The effect of silicide formation and deposition conditions on the crystalline quality of Cu epitaxy is also discussed.


1991 ◽  
Vol 236 ◽  
Author(s):  
Yung-Jen Lin ◽  
Ming-Deng Shieh ◽  
Chiapying Lee ◽  
Tri-Rung Yew

AbstractSilicon epitaxial growth on silicon wafers were investigated by using plasma enhanced chemical vapor deposition from SiH4/He/H2. The epitaxial layers were growm at temperatures of 350°C or lower. The base pressure of the chamber was greater than 2 × 10−5 Torr. Prior to epitaxial growth, the wafer was in-situ cleaned by H2 baking for 30 min. The epi/substrate interface and epitaxial layers were observed by cross-sectional transmission electron microscopy (XTEM). Finally, the influence of the ex-situ and in-situ cleaning processes on the qualities of the interface and epitaxial layers was discussed in detail.


1991 ◽  
Vol 220 ◽  
Author(s):  
Q. F. Xiao ◽  
J. R. Jimenez ◽  
L. J. Schowalter ◽  
L. Luo ◽  
T. E. Mitchell ◽  
...  

ABSTRACTEpitaxial Si layers have been grown under a variety of growth conditions on CoSi2 (001) by molecular beam epitaxy (MBE). The structural properties of the Si overgrowth were studied by in-situ Reflection High Energy Electron Diffraction (RHEED), as well as ex-situ MeV4He+ ion channeling and High Resolution Transmission Electron Microscopy (HRTEM). Strong influences of the CoSi2 surface reconstruction on the Si overgrowth have been observed. RHEED studies show islanding growth of Si on the CoSi2 (001) (3/√2 × √2)R45 reconstructed surface, but smooth growth of Si on the CoSi2 (001) {√2 × √2)R45 reconstructed surface, under the same growth conditions. The growth of Si on thin layers of CoSi2 (2nm-6nm) with (√2 × √2)R45 reconstructed surface at 460°C results in high crystalline quality for the Si top layer, as indicated by good channeling minimum yield (Xmin < 6%), but cross-sectional TEM shows that the CoSi2 layers are discontinuous. We also report preliminary results on Si grown on a 2 × 2 reconstructed CoSi2 (001) surface.


2012 ◽  
Vol 18 (6) ◽  
pp. 1410-1418 ◽  
Author(s):  
Daniel K. Schreiber ◽  
Praneet Adusumilli ◽  
Eric R. Hemesath ◽  
David N. Seidman ◽  
Amanda K. Petford-Long ◽  
...  

AbstractA sample preparation method is described for enabling direct correlation of site-specific plan-view and cross-sectional transmission electron microscopy (TEM) analysis of individual nanostructures by employing a dual-beam focused-ion beam (FIB) microscope. This technique is demonstrated using Si nanowires dispersed on a TEM sample support (lacey carbon or Si-nitride). Individual nanowires are first imaged in the plan-view orientation to identify a region of interest; in this case, impurity atoms distributed at crystalline defects that require further investigation in the cross-sectional orientation. Subsequently, the region of interest is capped with a series of ex situ and in situ deposited layers to protect the nanowire and facilitate site-specific lift-out and cross-sectioning using a dual-beam FIB microscope. The lift-out specimen is thinned to electron transparency with site-specific positioning to within ∼200 nm of a target position along the length of the nanowire. Using the described technique, it is possible to produce correlated plan-view and cross-sectional view lattice-resolved TEM images that enable a quasi-3D analysis of crystalline defect structures in a specific nanowire. While the current study is focused on nanowires, the procedure described herein is general for any electron-transparent sample and is broadly applicable for many nanostructures, such as nanowires, nanoparticles, patterned thin films, and devices.


2005 ◽  
Vol 20 (7) ◽  
pp. 1878-1887 ◽  
Author(s):  
Takanori Kiguchi ◽  
Naoki Wakiya ◽  
Kazuo Shinozaki ◽  
Nobuyasu Mizutani

The crystallization process of yttria-stabilized zirconia (YSZ) gate dielectrics deposited on p-Si (001) and SiOx/p-Si(001) substrates and the growth process of SiOx has been investigated directly using high-temperature in situ cross-sectional view transmission electron microscopy (TEM) method and high-temperature plan-view in-situ TEM method. The YSZ layer is crystallized by the nucleation and growth mechanism at temperatures greater than 573 K. Nucleation originates from the film surface. Nucleation occurs randomly in the YSZ layer. Subsequently, the crystallized YSZ area strains the Si surface. Finally, it grows in the in-plane direction with the strain, whereas, if a SiOx layer of 1.4 nm exists, it absorbs the crystallization strain. Thereby, an ultrathin SiOx layer can relax the strain generated in the Si substrate in thin film crystallization process.


Author(s):  
R.J. Young ◽  
A. Buxbaum ◽  
B. Peterson ◽  
R. Schampers

Abstract Scanning transmission electron microscopy with scanning electron microscopes (SEM-STEM) has become increasing used in both SEM and dual-beam focused ion beam (FIB)-SEM systems. This paper describes modeling undertaken to simulate the contrast seen in such images. Such modeling provides the ability to help understand and optimize imaging conditions and also support improved sample preparation techniques.


Author(s):  
Jian-Shing Luo ◽  
Hsiu-Ting Lee ◽  
San-Lin Liew ◽  
Ching-Shan Sung ◽  
Yi-Jing Wu

Abstract The use of in-situ lift-out combined with focused ion beam milling has become a favorable choice as it offers several indispensable advantages compared to the conventional mechanical and ex-situ lift-out sample preparation techniques. This paper discusses the procedures of the multiple-post in-situ lift-out grids preparation using a dicing saw. In addition, a real case is described to show that the multiple-post in-situ lift-out grids have been successfully applied to failure analysis. The multiple-post in-situ lift-out grids provide more positions and flatter surfaces for TEM sample mounting. The flat surface greatly increases the mounting efficiency and success rate. For the real case application, a thick Al fluoride oxide layer and Al corrosion were found above the Al bond pads, which had NOSP problem, and their neighbor area, respectively.


1998 ◽  
Vol 523 ◽  
Author(s):  
C. Amy Hunt ◽  
Yuhong Zhang ◽  
David Su

AbstractTransmission electron microscopy (TEM) is a useful tool in process evaluation and failure analysis for semiconductor industries. A common focus of semiconductor TEM analyses is metalization vias (plugs) and it is often desirable to cross-section through a particular one. If the cross-sectional plane deviates away from the center of the plug, then the thin adhesion layer around the plug will be blurred by surrounding materials such as the inter-layer dielectric and the plug material. The importance of these constraints, along with the difficulty of precision sample preparation, has risen sharply as feature sizes have fallen to 0.25 μm and below. The suitability of common sample preparation techniques for these samples is evaluated.


Sign in / Sign up

Export Citation Format

Share Document