Latest Gas Turbine Repair Techniques Using Laser Technology

Author(s):  
A.D. Williams ◽  
J.L. Humphries

Abstract Over recent years, with the drive for new higher power, higher efficiency Gas Turbine engines, manufacturers have had to look at new alloys and new coating techniques to achieve and support the industry requirements. Repair technology has therefore had to keep pace with the OEM advances and much research and development has been undertaken in developing new repair processes. Many of the alloys now used are directionally solidified or single crystal, which until now have been deemed irreparable by traditional welding techniques. Recent developments in the use of lasers have not only rendered these alloys salvageable but have also reduced the overall repair time and therefore the cost. This paper looks at the use of laser technology as a repair process for gas turbine components, touching briefly on laser cutting and drilling but concentrating mainly on laser powder feed welding and its applications.

1976 ◽  
Vol 98 (4) ◽  
pp. 619-625
Author(s):  
K. H. Pech ◽  
N. L. Downing

Fuel pumps and metering systems are becoming more complex and expensive to meet the high performance requirements of advanced gas turbine engines. A simple, inlet throttled, centrifugal pump integrated with a retracting vane starting element provides the potential for a reliable, high performance design capable of reducing the cost, weight, and temperature rise of the fuel system. This paper presents the results of recent efforts to develop the retracting vane element and to integrate it with a vapor core centrifugal pump in order to meet the fuel performance and functional requirements of an advanced gas turbine main fuel pump.


2021 ◽  
Vol 20 (3) ◽  
pp. 152-159
Author(s):  
A. M. Faramazyan ◽  
S. S. Remchukov ◽  
I. V. Demidyuk

The application of casting technologies in the production of parts and assemblies of small-size gas turbine engines is justified in the paper. The technology of vacuum casting in gypsum molds was tested during the production of an experimental centrifugal compressor of a small-size gas turbine engine. On the basis of a 3D model of the designed centrifugal compressor, computational studies of vacuum casting were carried out and rational parameters of the technological process were determined. Prototypes of the developed centrifugal compressor of a small-size gas turbine engine were made. The results of calculations and the performed technological experiment confirmed the fill rate of the gating form and the absence of short pour. The distribution of shrinkage porosity and cavities corresponds to the design values and is concentrated in the central part of the casting that is subjected to subsequent machining. The area of the blades, disc and sleeve is formed without defects. The use of casting technologies in the production of parts and assemblies of small-size gas turbine engines assures the required quality with a comparatively low price of the finished product, making it possible to achieve the balance between the cost of the technology and the quality of the product made according to this technology.


Author(s):  
R. E. Barnhart

Metallic and ceramic coatings enhance the quality of today’s gas turbine engines by enabling them to run longer and by increasing their reliability and efficiency of operation. Coatings give design engineers more latitude in their choice of materials for high-performance applications. Discussed here are the characteristics of coatings produced by three different means: detonation-gun process, plasma process, and diffusion process. By considering the following three parameters: (a) the nature of wear and corrosion problems in gas turbine engines, (b) the results of coated components in commercial service, and (c) the cost savings attributable to coatings, we can develop guidelines for even more effective use of coatings in the future.


1978 ◽  
Author(s):  
P. D. Baker ◽  
R. A. Masom

A review of current technology applied to sensors for the measurement of speed, temperature, and pressure in gas turbine engines. The use of suitable materials and designs to overcome the hostile environments is discussed. The desirability of obtaining a simple interface with control systems is considered.


Author(s):  
Thomas B. Kenney

Presently, the typical gas turbine based power generator relies on a large, expensive skid system to provide lubrication to the bearings. These skids consist of a large number of expensive components, many of which require maintenance that drives operating cost and creates environmental hazards. A smart lube system based on recently developed technology enables dramatic simplification and cost reduction of the skid system and significantly reduces oil consumption along with the frequency and cost of maintenance. Such a system would take advantage of the availability of advanced pump system controls and fluid nozzle technology to drastically reduce the quantity of oil required, and the resultant heat rejection. As a result, the sizes of reservoir, cooler, filter and piping are greatly reduced. The cost of components, support equipment and maintenance activities will also be reduced to a fraction of their present values.


Author(s):  
N. Sourial

Today’s high technology gas turbine engines incorporate the world’s most exotic alloys and are built to some of the most precise dimensional tolerances encountered in any industry. The constant drive for increased performance while substantially reducing fuel consumption and weight has pushed engine components and their designers to limits never before realized. To achieve these limits new methods and materials have evolved; not exclusively in the production of the engines but also in the repair and maintenance of them. The typical problems encountered in repair and maintenance are numerous and varied as are their solutions. This paper, however, will concentrate on one in particular and that is the typical damage encountered on a first stage power turbine vane ring and the technology employed to repair such damage. The vane ring was chosen because it is representative of a common problem encountered by all gas turbine engine manufacturers and simultaneously involves some of the most up to date repair techniques to restore it.


2018 ◽  
Vol 220 ◽  
pp. 03007
Author(s):  
Andrey Tkachenko ◽  
Evgeny Filinovaroslav Ostapyuk ◽  
Viktor Rybakov ◽  
Daria Kolmakova

The paper describes the method of selecting the working process parameters of a family of small-scale gas turbine engines (GTE) with common core. As an example, the thermodynamic design of a family of small-scale gas turbine engines (SGTE) with common core was carried out. The engine family includes a small-scale turbojet engine (STJE) and a gas turbine plant (GTP), which electric generator is driven by power turbine. The selection of rational values for the working process parameters of STJE and GTP was carried out in CAE system ASTRA on the basis of nonlinear optimization of these parameters, taking into account functional and parametric constraints. The quantitative results of deterioration in the performance of the engines of the family with common core are obtained in comparison with the engines with the optimum core for each type. However, the advanced creation of a common core can reduce the cost and timing of the engine creation, ensure its higher reliability (due to the development of the base common core) and reduce the cost of its production. The method of selecting the parameters of the working process of the GTE family with common core presents the solution to more complex problems, such as the possibility of developing a family consisting of five engines: a turbojet engine, turbofan engine, turbofan engine with a complex cycle, GTE with power turbine (GTE-PT), GTE-PT with recovery.


2020 ◽  
Vol 2020 (8) ◽  
pp. 42-48
Author(s):  
Vyacheslav Bezyazychnyy ◽  
Andrey Smirnov

There are presented technological (requirements in new technologies for repair of gas turbine engines (GTE) repaired according to a technical state, growing requirements on reliability, high cost of repair, a limited access to new technologies) and organization (absence of repair localization, high competition etc.) problems of aircraft gas turbine engine repair. The direction for updating: development of new repair technologies at the transition to the concept of repair on a technical state; module technology application; repair production localization; creation of flexible repair techniques etc. is considered.


Author(s):  
Marco Manetti ◽  
Iacopo Giovannetti ◽  
Nicola Pieroni ◽  
Horia Horculescu ◽  
Guido Peano ◽  
...  

High cycle fatigue is a factor that influence gas turbine buckets lifetime and it’s due to high frequency vibrations during service. Rotation and fluid flow around the blades cause static and dynamic stresses on the buckets row. For this reason the natural frequencies and HCF resistance evaluation are fundamental in the design phase of gas turbine engines in order to avoid resonance problems during service. Single crystal and directionally solidified superalloys shows anisotropic material properties, in particular single crystal can be modeled as orthotropic material in lattice directions for FEM simulations purposes. In this paper the influence of the lattice growth orientation, identified by two angles, on the natural frequencies of first stage bucket has been investigated. Six-sigma analysis has been performed in order to obtain a transfer function between lattice orientation and bucket vibration. The Design of Experiment (DoE) has been performed using FEA modal results on ten different vibration modes. The results obtained by FEA are verified by an experimental test on the real Heavy Duty MS5002 buckets.


1976 ◽  
Author(s):  
M. Gell ◽  
K. M. Thomas

Directionally solidified eutectic airfoils for advanced gas turbine engine applications are undergoing intensive development in a number of laboratories in the United States and Europe. These materials offer the potential of a 40 percent or greater increase in creep strength for high work engines or a 50 K or more increase in blade metal temperature for growth versions of current engines. The development status of these alloys will be described with emphasis on casting techniques, mechanical properties, and coatings for the gamma/gamma prime + delta (γ / γ′ + δ) D.S. eutectic. The implications of the elastic anisotropy and low off-axis properties of the D.S. eutectics to turbine blade design and analysis will be discussed.


Sign in / Sign up

Export Citation Format

Share Document