Tribological Properties of Steels

2021 ◽  
pp. 199-225

Abstract This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.

2018 ◽  
Vol 70 (9) ◽  
pp. 1699-1705
Author(s):  
Dong Qiang Gao ◽  
Rui Wang ◽  
Wei Chen

Purpose The effect of the load on the tribological properties of Si3N4-hBN sliding against Si3N4 were investigated under dry and water lubrication condition. Design/methodology/approach Using a MMU-5G type pin-on-disc friction and wear tester. Findings Under the dry friction, the wear mechanism was dominated by ploughing and abrasive wear, and the contact status was elastic contact under the load less than 25 N. With the increase of the load, the friction coefficient decreased; the main wear mechanism was fatigue fracture, and the contact status turned into plastic contact. Under water lubrication, effective lubrication film could be produced on the worn surface, and it had a function of fluid lubrication under the load less than 15 N. With the increase of the load, the pin and the disc came into direct contact, and the friction and wear of the pairs were aggravated; the wear mechanism changed from chemical wear into abrasive wear and brittle spalling. Originality/value The study on the effect of the load on the tribological properties of Si3N4-hBN sliding against Si3N4 was investigated under dry and water lubrication condition in the way of contact stress.


2021 ◽  
pp. 163-178

Abstract This chapter covers the friction and wear behaviors copper alloys. It describes the compositions and form of copper available and their suitability for applications involving friction, different types of erosion, and adhesive and abrasive wear.


2021 ◽  
pp. 179-198

Abstract This chapter covers the friction and wear behaviors of cast irons. It describes the microstructure and metallurgy of gray, white, malleable, and ductile cast irons, their respective tensile properties, and their suitability for applications involving friction, various types of erosion, and adhesive and abrasive wear.


2021 ◽  
pp. 227-270

Abstract This chapter covers the tribological properties of stainless steel and other corrosion-resistant alloys. It describes the metallurgy and microstructure of the basic types of stainless steel and their suitability for friction and wear applications and in environments where they are subjected to liquid, droplet, and solid particle erosion. It also discusses the tribology of nickel- and cobalt-base alloys as well as titanium, zinc, tin, aluminum, magnesium, beryllium, graphite, and different types of wood.


2016 ◽  
Vol 68 (3) ◽  
pp. 308-314 ◽  
Author(s):  
Ming Qiu ◽  
Yanwei Miao ◽  
Yingchun Li ◽  
Long Chen ◽  
Rensong Hu ◽  
...  

Purpose The fabric self-lubricating liners are the key factors impacting the performances of self-lubricating spherical plain bearings. The purpose of this paper is to improve the friction and wear properties of self-lubricating radial spherical plain bearings by modification of the liners. Design/methodology/approach The liners of hybrid woven PTFE/Kevlar fabrics were treated respectively by the LaCl3 and CeO2 solutions. The tribological properties of self-lubricating spherical plain bearings with treated or untreated liners under continuous swaying conditions were investigated with the bearing tester at the swaying frequency of 2.5 Hz and the swaying angle of ±10°. The film formation and wear mechanisms were analyzed based on the observation of worn surfaces with a scanning electron microscope (SEM) and an energy dispersive spectrometer (EDS). Findings Results show that the tribological properties of the bearings treated by the LaCl3 or CeO2 solution were improved compared with those of the untreated bearings. In particular, the wear resistance of bearings treated by the CeO2 solution was remarkably improved under higher swaying cycles, but the anti-friction properties and cooling effects of bearings treated by the LaCl3 solution were better under lower swaying cycles. Through SEM analysis, the reasons were analyzed. The bearings with treated liners only produced slight adhesive and abrasive wear, but the bearings with untreated liners produced more serious adhesive and abrasive wear under higher swaying cycles. Originality/value The paper proposed a new pretreatment process for the self-lubricating liners. The investigation on the friction and wear behaviors of the bearings is beneficial for prolonging the service lives of the radial spherical plain bearings.


2011 ◽  
Vol 338 ◽  
pp. 607-610 ◽  
Author(s):  
Ming Qiu ◽  
Zhi Lun Gao ◽  
Guo Feng Wang ◽  
Long Chen

The friction and wear behaviors of three kinds of spherical plain bearings with PTFE fabric composite liners were investigated by a high oscillating frequency and heavy load tribo-tester. Dry sliding tests were carried out at different oscillating frequencies. With the help of SEM and EDS, the differences of worn surfaces of the three spherical bearings were investigated. The results indicate that the fiber woven with PTFE effects the friction and wear characteristics of bearing, the tribological properties of bearing with Kevlar/PTFE fiber woven liner is the best in the three kinds of bearing. The abrasive wear are appeared on the surface of wore liners of bearingⅠ,while bearingⅡappeared normal wear, bearing III showed serious adhesive wear and abrasive wear.


2021 ◽  
pp. 089270572110286
Author(s):  
Xinyue Zhang ◽  
Dekun Zhang ◽  
Kai Chen ◽  
Handong Xu ◽  
Cunao Feng

The complex movement of artificial joints is closely related to the wear mechanism of the prosthesis material, especially for the polymer prosthesis, which is sensitive to motion paths. In this paper, the “soft-soft” all-polymer of XLPE/PEEK are selected to study the influence of motion paths on the friction and wear performance. Based on the periodic characteristics of friction coefficient and wear morphology, this paper reveals the friction and wear mechanism of XLPE/peek under multi-directional motion path, and obtains the quantitative relationship between friction coefficient and the aspect ratios of “∞”-shape motion path, which is of great significance to reveal and analyze the wear mechanism of “soft” all-polymer under multi-directional motion path. The results show that the friction coefficient is affected by the motion paths and have periodicity. Morever, under the multi-directional motion paths, the wear of PEEK are mainly abrasive wear and adhesive wear due to the cross shear effect, while the wear of XLPE is mainly abrasive wear with plastic accumulation. In addition, the friction coefficient is greatly affected the aspect ratios Rs-l of “∞”-shape and loads. Meanwhile, the wear morphologies are greatly affected by the aspect ratios Rs-l of “∞”-shape, but less affected by loads.


2010 ◽  
Vol 654-656 ◽  
pp. 2763-2766 ◽  
Author(s):  
Li Wen Mu ◽  
Xin Feng ◽  
Yi Jun Shi ◽  
Huai Yuan Wang ◽  
Xiao Hua Lu

The tribological properties of polyimide (PI) composites reinforced with graphite or MoS2 sliding in liquid alkali and water as well as dry friction were investigated using a ring-on-ring tester. The results show that the friction coefficient (μ) and wear rate (W) for both graphite/PI and MoS2/PI composites in different liquid mediums are μdry>μwater >μalkali and Wwater>Wdry >Walkali. Results also indicate that the friction coefficient and wear rate of the PI composites filled with different solid lubricants are μMoS2 >μgraphite and W MoS2 >Wgraphite in different liquid mediums. In addition, the hydrophobic inorganic fillers are fit for the reinforcement of polymer-based composites sliding in liquid mediums. It is also concluded from the authors’ work that the wear rate and friction coefficient of polymer-based (such as PI, PTFE) composites in the alkali lubricated conditions is lowest among all the friction conditions. This may be attributed to the ionic hydration in the alkaline solution.


2014 ◽  
Vol 81 (7) ◽  
Author(s):  
N. W. Khun ◽  
H. Zhang ◽  
C. Y. Yue ◽  
J. L. Yang

Self-lubricating and wear resistant epoxy composites were developed via incorporation of wax-containing microcapsules. The effects of microcapsule size and content and working parameters on the tribological properties of epoxy composites were systematically investigated. The incorporation of microcapsules dramatically decreased the friction and wear of the composites from those of the epoxy. The increased microcapsule content or the incorporation of larger microcapsules decreased the friction and wear of the epoxy composites due to the larger amount of released wax lubricant via the rupture of microcapsules during the wear test. The friction of the composites decreased with increased normal load as a result of the promoted wear of the composites and the increased release of the wax lubricant.


Sign in / Sign up

Export Citation Format

Share Document