scholarly journals STUDIES ON TENSILE PROPERTIES AT VARIOUS STRAIN RATES AND CORROSION BEHAVIOR OF PEAKAGED AL-6SI-0.5MG (-0.5CU) ALLOYS

2016 ◽  
Vol 17 (2) ◽  
pp. 105-115
Author(s):  
Abul Hossain ◽  
Fahmida Gulshan ◽  
A. S. W. Kurny

This paper focuses the effect of Cu additions on tensile properties of Al-6Si-0.5Mg alloy at various strain rates and electrochemical corrosion behavior. The additions of Cu resulted in an increase in tensile strength and showed higher strength all over the experimental strain rates. Evaluations of tensile properties at the three different strain rates (10-4, 10-3 & 10-2s-1) showed that they affected the tensile properties significantly. The strength was better at higher strain rate but ductility was poor. Eelectrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation have been used to evaluate the corrosion resistance of Cu free and 0.5wt% Cu content Al-6Si-0.5Mg alloy in 0.1M NaCl solution. The 0.5wt% Cu addition to the Al-6Si-0.5Mg alloy showed that Cu decreased susceptibility to corrosion compared to the Cu free Al-6Si-0.5Mg alloy. The magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg alloy were shifted to the more noble direction due to 0.5wt% Cu addition and thermal modification.

2016 ◽  
Vol 44 ◽  
pp. 29-35
Author(s):  
Abul Hossain ◽  
M. A. Gafur ◽  
Fahmida Gulshan ◽  
A. S. W. Kurny

The purpose of this study is to understand the electrochemical corrosion behavior of 1wt% Cu content Al-6Si-0.5Mg alloy in 0.1M NaCl solution. The potentiodynamic polarization curves reveal that 1wt% Cu content alloy is less prone to corrosion than the Cu free alloy. The EIS test results show that corrosion resistance or polarization resistance (Rct) increases with the addition of 1wt% Cu to Al-6Si-0.5Mg alloy. Higher polarization resistance (Rp) has been obtained with the addition of 1wt% Cu to the Al-6Si-0.5Mg alloy. Due to addition of Cu and thermal modification, the magnitude of open circuit potential (OCP), corrosion potential (Ecorr) and pitting corrosion potential (Epit) of Al-6Si-0.5Mg alloy in NaCl solution were shifted to the more noble direction.


2015 ◽  
Vol 1095 ◽  
pp. 95-98
Author(s):  
Li Ma ◽  
Qiang Hu ◽  
Yan Bin Sun

The electrochemical corrosion behavior of the Sn-8Zn-3Bi-xCu lead-free solder in 3.5%NaCl solution was studied to reveal effect of Cu addition on the corrosion resistance of Sn-8Zn-3Bi solder alloy. The results showed that adding Cu element increased the corrosion potential of Sn-8Zn-3Bi-xCu solder alloysThe corrosion resistance of Sn-8Zn-3Bi-xCu solder alloys was improved correspondingly. The corrousion product of Sn-8Zn-3Bi-xCu alloy was mainly zinc oxide. More corrosion products were observed with the increse of Cu content.


2015 ◽  
Vol 2015 ◽  
pp. 1-18 ◽  
Author(s):  
J. Porcayo-Calderon ◽  
R. A. Rodriguez-Diaz ◽  
E. Porcayo-Palafox ◽  
J. Colin ◽  
A. Molina-Ocampo ◽  
...  

The effect of Cu addition on the electrochemical corrosion behavior of Ni3Al intermetallic alloy was investigated by potentiodynamic polarization, open-circuit potential, linear polarization resistance, and electrochemical impedance spectroscopy in 1.0 M H2SO4solution. Performance of the pure elements (Cu, Ni, and Al) was also evaluated. In general, Cu addition improved the corrosion resistance of Ni3Al. Electrochemical measurements show that corrosion resistance of Ni3Al-1Cu alloy is lower than that of other intermetallic alloys and pure elements (Ni, Cu, and Al) in 1.0 M H2SO4solution at 25°C. Surface analysis showed that the Ni3Al alloys are attacked mainly through the dendritic phases, and Cu addition suppresses the density of dendritic phases.


2011 ◽  
Vol 189-193 ◽  
pp. 571-574
Author(s):  
Peng Li

HIPIB irradiation experiment is carried out at a specific ion current density of 1.1 J/cm2 with shot number from one to ten in order to explore the effect of shot number on electrochemical corrosion behavior of magnesium alloy. Surface morphologies, microstructure and corrosion resistance of the irradiated samples are examined by scanning electron microscopy (SEM), transmission electron microscope (TEM) and potentiodynamic polarization technique, respectively. It is found that HIPIB irradiation leads to the increase in open circuit potential, corrosion potential and breakdown potential, and the decrease in the corrosion current density and the corrosion rate as compared to the original sample. The improved corrosion resistance is mainly attributed to the grain refinement and surface purification induced by HIPIB irradiation.


2012 ◽  
Vol 229-231 ◽  
pp. 155-158
Author(s):  
Cheng Xian Yin ◽  
Juantao Zhang ◽  
Zhen Quan Bai ◽  
Bin Wei

This paper studies effect of corrosion inhibitor TG201 on electrochemical corrosion behavior of tubular steel HP13Cr by polarization curve test and exchange impedance spectrum method. It analyzes corrosion morphology by SEM. The results show that the increase of compression stress on HP13Cr lead to its self-corrosion potential shifting negatively, then electrochemical corrosion rate increases. Finally, corrosion resistance performance of HP13Cr steel weakens in acidification environment. Effects of compression stress on electrochemical corrosion become weak by adding TG201 inhibitors. And inhibitor efficiency of TG201 has obvious increase. So controlling compression stress has certain influence on inhibitors efficiency.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4199 ◽  
Author(s):  
Dan Gheorghe ◽  
Ion Pencea ◽  
Iulian Vasile Antoniac ◽  
Ramona-Nicoleta Turcu

Higher-noble dental alloys (Au, Ag, and Pd) are the most desirable for dentistry applications, but they are expensive. Low-noble (Ag, Pd, Cu) dental alloys are alternatives to higher-noble ones due to their lower price. In this regard, the paper supports the price lowering of dental alloy by increasing the Cu content, i.e., a new 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn dental alloy. The increasing addition of the Cu leads to a complex structure consisting of a solid solution that engulfs compounds of micrometric and nanometric sizes. The 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn has demonstrated a much better electrochemical corrosion behavior in artificial saliva compared to the Paliag and Unique White dental alloys. The improved corrosion behavior of the new alloy is supported by the diminishing of the Cu selective diffusion into the electrolyte due to its retaining into compounds and into Ag-Pd solid solution. Also, the synergic effects of Cu, Zn, In, Sn may improve the corrosion resistance, but they have strengthened the 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn matrix. The main finding addressed in the paper consists in a new 58Ag24Pd11Cu2Au2Zn1.5In1.5Sn dental alloy with improved corrosion resistance in artificial saliva.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1317
Author(s):  
Hongmei Zhang ◽  
Ling Yan ◽  
Yangyang Zhu ◽  
Fangfang Ai ◽  
Hongnan Li ◽  
...  

In this paper, electrochemical corrosion tests and full immersion corrosion experiments were conducted in seawater at room temperature to investigate the electrochemical corrosion behavior and the corrosion mechanism of high-strength EH47. The polarization curve, EIS (electrochemical impedance spectroscopy), SEM (scanning electron microscope), and EDS analyses were employed to analyze the results of the electrochemical corrosion process. The electrochemical corrosion experiments showed that the open circuit potential of EH47 decreases and then increases with an increase in total immersion time, with the minimum value obtained at 28 days. With an increase in immersion time, the corrosion current density (Icorr) of EH47 steel first decreases and then increases, with the minimum at about 28 days. This 28-day sample also showed the maximum capacitance arc radius, the maximum impedance and the minimum corrosion rate. In the seawater immersion test in the laboratory, the corrosion mechanism of EH47 steel in the initial stage of corrosion is mainly pitting corrosion, accompanied by a small amount of crevice corrosion with increased corrosion time. The corrosion products of EH47 steel after immersion in seawater for 30 days are mainly composed of FeOOH, Fe3O4 and Fe2O3.


2013 ◽  
Vol 14 (1) ◽  
pp. 103-108
Author(s):  
Jagadeesh Bhattarai ◽  
Susil Baral

The corrosion behavior of the sputter–deposited amorphous and nanocrystalline W–xTa (x = 8–77) alloys was studied in 0.5 M NaCl solution open to air at 25°C using corrosion tests and electrochemical measurements. Tungsten and tantalum metals act synergistically in enhancing the corrosion resistance of the sputter–deposited W–xTa alloys and hence additions of 23 at. % of tantalum or more to the sputter–deposited W–xTa alloys were found to be effective to achieve significantly high corrosion resistance properties of the alloys than those of alloy– constituting elements. In particular, the corrosion rate of the W–60Ta alloy showed the lowest corrosion rate (that is, 2.0×10-3). The open circuit potential of the alloys shifted noble (positive) direction with immersion time. Addition of tantalum metal in W–xTa alloys is effective for ennoblement of the open circuit corrosion potential of the tungsten metal in 0.5 M NaCl solution open to air at 25°C. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 103-108 DOI: http://dx.doi.org/10.3126/njst.v14i1.8929


Sign in / Sign up

Export Citation Format

Share Document