scholarly journals Metal Release of Standard and Fake Orthodontic Braces: An In Vitro Study

2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Siti Hajjar Nasir ◽  
Muhammad Syahmi Mohamad Amran ◽  
Muhammad Muaz Abidin Mustaffar

INTRODUCTION: The growing demand for orthodontic braces among Malaysians has led to the development of fake braces. These fake braces services are illegal and their brackets are reported to be of inferior quality. Fake braces are constantly being exposed to the saliva intraorally, hence they are susceptible to corrosion. This study was conducted to investigate the release of metal ions as a result of corrosion from standard and fake orthodontic braces immersed in artificial saliva of different pH. MATERIALS AND METHODS: A total of six different types of brackets (three from standard and three from fake braces) were immersed in containers containing 5 mL of artificial saliva of pH 4.9 and pH 7.8. The samples were collected for analysis on day 1, day 14, and day 28 using Inductively-Coupled Plasma Mass Spectrometry (ICPMS) to evaluate the amount of metal ion released. Statistical analysis was performed to isolate the significant difference of metal ions released between two types of braces in different pH solutions. RESULTS: The release of aluminum, nickel, chromium, manganese and copper were observed and analyzed. Fake braces released the highest concentration of chromium, manganese, and nickel ions in both artificial saliva as compared to standard braces. Brackets immersed in pH 4.9 released a higher number of ions compared to pH 7.8. CONCLUSION: This study showed that fake braces released the highest concentration of metal ions as compared to standard braces. Both time and pH influenced the release of metal ions from orthodontic brackets.

2021 ◽  
pp. 232020682110157
Author(s):  
Abdolrasoul Rangrazi ◽  
Amirtaher Mirmortazavi ◽  
Reyhaneh Imani ◽  
Davood Nodehi

Aim: The aim of this study was to evaluate the effect of the ozonated water on corrosion of a cobalt–chromium (Co-Cr)-based alloy, which is applied for the fabrication of metal frameworks of removable partial dentures. Materials and Methods: In this in vitro study, a total of 30 disk-shaped samples of a Co-Cr alloy were papered and randomly divided into two groups of 15 specimens. In group 1 (control), the specimens were stored in distilled water (DW), and in group 2, the specimens were stored in ozonated water. Around 90 immersions were performed, and the weight change of each specimen was determined. The ion release was analyzed using an inductively coupled plasma-optical emission spectrophotometer. The potentiodynamic polarization test was performed for each group to assess the corrosion resistance of the Co-Cr alloy. The statistical analysis was performed using SPSS version 22. Data were analyzed by independent samples’ t-test. Results: The results showed no significant difference between the weight changes of the two groups. The test using an inductively coupled plasma-optical emission spectrophotometer demonstrated no significant difference between the groups in Co and Cr ions release. In the potentiodynamic polarization test, both groups present similar corrosion behavior, and ozonated water has no deleterious effect on the corrosion resistance and passive range of the Co-Cr alloy compared to DW. Conclusion: As compared to DW, ozonated water has no significant deleterious effect on the corrosion resistance of the Co-Cr frameworks and can be used for cleaning the removable partial dentures.


Arthritis ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ibrahim A. Malek ◽  
Joanne Rogers ◽  
Amanda Christina King ◽  
Juliet Clutton ◽  
Daniel Winson ◽  
...  

One hundred and twenty six paired samples of plasma and whole blood were measured with inductively coupled plasma mass spectrometry technique for metal ions analysis to determine a relationship between them. There was a significant difference between the mean plasma and whole blood concentrations of both cobalt (Co) and chromium (Cr) (p<0.0001 for both Co and Cr). The mean ratio between plasma and whole blood Cr and Co was 1.56 (range: 0.39–3.85) and 1.54 (range: 0.64–18.26), respectively, but Bland and Altman analysis illustrated that this relationship was not universal throughout the range of concentrations. There was higher variability at high concentrations for both ions. We conclude that both these concentrations should not be used interchangeably and conversion factors are unreliable due to concentration dependent variability.


2012 ◽  
Vol 13 (3) ◽  
pp. 376-381 ◽  
Author(s):  
CM Manjith ◽  
Srinivas Kumar Karnam ◽  
A Naveen Reddy

ABSTRACT Aim The metal ion released from the orthodontic appliance may cause allergic reactions particularly nickel and chromium ions. Hence, this study was undertaken to determine the amount of nickel, chromium, copper, cobalt and iron ions released from simulated orthodontic appliance made of new archwires and brackets. Materials and methods Sixty sets of new archwire, band material, brackets and ligature wires were prepared simulating fixed orthodontic appliance. These sets were divided into four groups of fifteen samples each. Group 1: Stainless steel rectangular archwires. Group 2: Rectangular NiTi archwires. Group 3: Rectangular copper NiTi archwires. Group 4: Rectangular elgiloy archwires. These appliances were immersed in 50 ml of artificial saliva solution and stored in polypropylene bottles in the incubator to simulate oral conditions. After 90 days the solution were tested for nickel, chromium, copper, cobalt and iron ions using atomic absorption spectrophotometer. Results Results showed that high levels of nickel ions were released from all four groups, compared to all other ions, followed by release of iron ion levels. There is no significant difference in the levels of all metal ions released in the different groups. Conclusion The study confirms that the use of newer brackets and newer archwires confirms the negligible release of metal ions from the orthodontic appliance. Clinical significance The measurable amount of metals, released from orthodontic appliances in artificial saliva, was significantly below the average dietary intake and did not reach toxic concentrations. How to cite this article Karnam SK, Reddy AN, Manjith CM. Comparison of Metal Ion Release from Different Bracket Archwire Combinations: An in vitro Study. J Contemp Dent Pract 2012;13(3):376-381.


Author(s):  
Marzia Cosmi ◽  
Nathaly Gonzalez-Quiñonez ◽  
Pablo Tejerina Díaz ◽  
Ángel Manteca ◽  
Elisa Blanco González ◽  
...  

The bio-tribocorrosion of metallic materials used for dental implants (Ti and alloys) in the oral environment involves the production of metallic debris in the ionic, but also in the nanoparticulated...


Pharmacology ◽  
2019 ◽  
Vol 104 (1-2) ◽  
pp. 98-112 ◽  
Author(s):  
Katsuaki Dan ◽  
Naohiro Katoh ◽  
Takaaki Matsuoka ◽  
Katsuyuki Fujinami

Background: Historical evidence has verified the multifaceted antiviral efficacy of polyoxometalates (PMs). Methods: We carried out a study to investigate the antimicrobial effects of each of the 5 substances comprising virus block (VB): 3 PMs that have antibacterial and antiviral activity, an antibiotic agent, and an antibacterial agent. We also investigated the effectiveness of the addition of VB to moist hand towels in a study involving 120 volunteers. The time-dependent changes in metal ion concentrations in aqueous VB solution were analyzed using inductively coupled plasma atomic emission spectroscopy. Results: The metal elements in the aqueous VB solution remained stable for 12 weeks without undergoing time-dependent changes. Discussion: Further investigations were performed to study hand hygiene using moist hand towels in daily life settings. To this end, 120 volunteers provided 240 specimens that were used to investigate the presence of antibacterial compounds on the volunteers’ hands before and after hand towel use. An aliquot of each specimen was suspended in phosphate-buffered saline and plated on agar media, and the number of colonies formed was counted. Normal bacterial flora found on the hands of the volunteers was investigated before and after the use of 4 different moist hand towels. Conclusions: The effects of VB and PMs were superior to those of commercial moist hand towels, indicating that effective data were obtained that may be useful for the practical application of the tested items.


Plant Disease ◽  
2020 ◽  
Vol 104 (3) ◽  
pp. 724-730 ◽  
Author(s):  
Qing Ge ◽  
Paul A. Cobine ◽  
Leonardo De La Fuente

Xylella fastidiosa is a xylem-limited plant pathogenic bacterium that causes disease in many crops worldwide. Copper (Cu) is an antimicrobial agent widely used on X. fastidiosa hosts to control other diseases. Although the effects of Cu for control of foliar pathogens are well known, it is less studied on xylem-colonizing pathogens. Previous results from our group showed that low concentrations of CuSO4 increased biofilm formation, whereas high concentrations inhibited biofilm formation and growth in vitro. In this study, we conducted in planta experiments to determine the influence of Cu in X. fastidiosa infection using tobacco as a model. X. fastidiosa-infected and noninfected plants were watered with tap water or with water supplemented with 4 mM or 8 mM of CuSO4. Symptom progression was assessed, and sap and leaf ionome analysis was performed by inductively coupled plasma with optical emission spectroscopy. Cu uptake was confirmed by increased concentrations of Cu in the sap of plants treated with CuSO4-amended water. Leaf scorch symptoms in Cu-supplemented plants showed a trend toward more severe at later time points. Quantification of total and viable X. fastidiosa in planta indicated that CuSO4-amended treatments did not inhibit but slightly increased the growth of X. fastidiosa. Cu in sap was in the range of concentrations that promote X. fastidiosa biofilm formation according to our previous in vitro study. Based on these results, we proposed that the plant Cu homeostasis machinery controls the level of Cu in the xylem, preventing it from becoming elevated to a level that would lead to bacterial inhibition.


Sign in / Sign up

Export Citation Format

Share Document