scholarly journals FLEXIBLE WIRELESS PASSIVE PRESSURE SENSORS FOR BIOMEDICAL APPLICATIONS

Author(s):  
M.A. Fonseca ◽  
M.G. Allen ◽  
J. Kroh ◽  
J. White
2013 ◽  
Vol 647 ◽  
pp. 315-320 ◽  
Author(s):  
Pradeep Kumar Rathore ◽  
Brishbhan Singh Panwar

This paper reports on the design and optimization of current mirror MOSFET embedded pressure sensor. A current mirror circuit with an output current of 1 mA integrated with a pressure sensing n-channel MOSFET has been designed using standard 5 µm CMOS technology. The channel region of the pressure sensing MOSFET forms the flexible diaphragm as well as the strain sensing element. The piezoresistive effect in MOSFET has been exploited for the calculation of strain induced carrier mobility variation. The output transistor of the current mirror forms the active pressure sensing MOSFET which produces a change in its drain current as a result of altered channel mobility under externally applied pressure. COMSOL Multiphysics is utilized for the simulation of pressure sensing structure and Tspice is employed to evaluate the characteristics of the current mirror pressure sensing circuit. Simulation results show that the pressure sensor has a sensitivity of 10.01 mV/MPa. The sensing structure has been optimized through simulation for enhancing the sensor sensitivity to 276.65 mV/MPa. These CMOS-MEMS based pressure sensors integrated with signal processing circuitry on the same chip can be used for healthcare and biomedical applications.


Author(s):  
Qiong Tian ◽  
Wenrong Yan ◽  
Tianding CHEN ◽  
Derek Ho

Pressure sensing electronics have gained great attention in human-machine interface, soft robotics, and wearable biomedical applications. However, existing sensor architectures are inadequate in overcoming the classic tradeoff between sensing range,...


2020 ◽  
Vol 7 (17) ◽  
pp. 2000743 ◽  
Author(s):  
Lin Li ◽  
Jiahong Zheng ◽  
Jing Chen ◽  
Zebang Luo ◽  
Yi Su ◽  
...  

2006 ◽  
Vol 920 ◽  
Author(s):  
Sarah Brady ◽  
Shirley Coyle ◽  
Yanzhe Wu ◽  
Gordon Wallace ◽  
Dermot Diamond

AbstractThe world is becoming more health conscious and as a result healthcare is evolving in many ways. Wearable computing is assisting with this evolution, finding its place in many biomedical applications where real-time monitoring of general health indicators is required. However, the inconvenience of connecting sensors through wires, which not only incurs high maintenance, limits the freedom of the person therefore hampering a true reflection of the person's actions. By using sensors attached to wireless sensor nodes, this constraint is removed. Also in order to be “wearable” the sensors must be comfortable, a factor often overlooked by traditional sensors, where functionality and robustness are of higher importance. This work is focused on the use of foam-based pressure sensors and similar textile-based sensors for monitoring the ambulatory movements of the wearer. Characterization of the molecular nature of the materials and their environment are presented. We find these sensors to be successful in detecting the movement events without imposing on the daily activity of the wearer.


2014 ◽  
Vol 220 ◽  
pp. 22-33 ◽  
Author(s):  
Haitao Cheng ◽  
Gang Shao ◽  
Siamak Ebadi ◽  
Xinhua Ren ◽  
Kyle Harris ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yachu Zhang ◽  
Han Lin ◽  
Fei Meng ◽  
Huai Liu ◽  
David Mesa ◽  
...  

Wearable and highly sensitive pressure sensors are of great importance for robotics, health monitoring and biomedical applications. Simultaneously achieving high sensitivity within a broad working range, fast response time (within...


Sign in / Sign up

Export Citation Format

Share Document