scholarly journals DEVELOPMENT OF HIGH-PERFORMANCE, HIGH-VOLUME CONSUMER MEMS GYROSCOPES

Author(s):  
J. Seeger ◽  
M. Lim ◽  
S. Nasiri
2011 ◽  
Vol 2011 (1) ◽  
pp. 000627-000634
Author(s):  
D. DeRoo ◽  
K. Shcheglov ◽  
M. Inbar ◽  
D. Smukowski ◽  
P. Zappella ◽  
...  

Sensors in Motion Inc. is developing a navigation grade 6 DOF MEMS INS using its proprietary and patented technologies. The military is investing in INS and IMU technology which can answer its needs as well as provide the baseline for hundreds of other DOD and commercial applications which need a C-swap sensitive utility. SIM’s technology for MEMS gyros was conceived to address past problems associated with MEMS gyroscopes while leveraging the C-swap benefits of high volume, high yield batch fabrication, automated packaging, self-calibration, and thermal compensation. A key requirement for the MEMS Gyroscope is controlled vacuum-levels to obtain high Q devices. Gyro die are packaged using a multilayer package and getter system, which provides and maintains sealed vacuum cavities. Die are assembled into the LCC package using conventional assembly techniques and the package cavity is sealed using an SST 3150 high-vacuum sealing system. The SST system is used to activate a thin-film getter layer on the package lid before reflow of the solder seal. Resulting pressure levels have been determined by characterizing packaged but unlidded sensor die in a vacuum chamber. The package material, process flow and test results are summarized and reviewed. Tooling, process parameters, and test techniques are explained.


2021 ◽  
Author(s):  
Yuk Lun Simon Chan ◽  
Olaf Diegel ◽  
Xun Xu

Abstract Laser powder bed fusion (LPBF) is a metal additive manufacturing (AM) process for fabricating high-performance functional parts and tools in various metallic alloys, such as titanium, aluminium and tool steels. The process can produce geometrically complex features such as conformal cooling channels (CCC) in plastic injection mould inserts to improve cooling efficiency. A recent attempt using a hybrid-build LPBF AM technique to fabricate aluminium mould inserts with CCC attained a substantial reduction in processing time, making it an attractive alternative method to the mould-making industry. Also, the successful bonding of aluminium powder with wrought aluminium alloys proved the practicability of this concept. This study further investigates whether a similarly successful outcome could apply to tool steel since tool steel is the preferred material for constructing high-grade high-volume plastic injection moulds. In this investigation, hybrid 18Ni300 powder-wrought 17-4 PH steel parts were additively fabricated using the hybrid-build LPBF technique, followed by various post-build heat treatments. The mechanical and metallurgical properties of the samples’ bonded interface were examined. Microstructure analysis revealed homogenous powder-substrate fusion across the interface region. Results from tensile tests confirmed strong powder-substrate bonding as none of the tensile fractures occurred at the interface. A direct post-build one-hour age-hardening treatment achieved the best combination of hardness, tensile strength, and ductility. The overall result demonstrates that hybrid-built 18Ni300-17-4 PH steel can be a material choice for manufacturing durable and high-performance injection mould inserts for high-volume production.


2021 ◽  
Author(s):  
Michael Garrison ◽  
Perrin Storch ◽  
William S. Eck ◽  
Valerie Adams ◽  
Patrick Fedick ◽  
...  

Bisphenol A (BPA) is a versatile petrochemical used in the preparation of high volume polymers including polycarbonates and epoxy resins. Unfortunately, BPA is also an endocrine disrupter and has been...


Author(s):  
Jeffrey DeNatale ◽  
Stephane Martel ◽  
Francois Dion ◽  
Jonathan Lachance

Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1929 ◽  
Author(s):  
Yu-You Wu ◽  
Jing Zhang ◽  
Changjiang Liu ◽  
Zhoulian Zheng ◽  
Paul Lambert

Nanomaterials have been increasingly employed for improving the mechanical properties and durability of ultra-high-performance concrete (UHPC) with high volume supplementary cementitious materials (SCMs). Recently, graphene oxide (GO) nanosheets have appeared as one of the most promising nanomaterials for enhancing the properties of cementitious composites. To date, a majority of studies have concentrated on cement pastes and mortars with fewer investigations on normal concrete, ultra-high strength concrete, and ultra-high-performance cement-based composites with a high volume of cement content. The studies of UHPC with high volume SCMs have not yet been widely investigated. This paper presents an experimental investigation into the mini slump flow and physical properties of such a UHPC containing GO nanosheets at additions from 0.00 to 0.05% by weight of cement and a water–cement ratio of 0.16. The study demonstrates that the mini slump flow gradually decreases with increasing GO nanosheet content. The results also confirm that the optimal content of GO nanosheets under standard curing and under steam curing is 0.02% and 0.04%, respectively, and the corresponding compressive and flexural strengths are significantly improved, establishing a fundamental step toward developing a cost-effective and environmentally friendly UHPC for more sustainable infrastructure.


Sign in / Sign up

Export Citation Format

Share Document