scholarly journals Development of construction and analysis of the elastic shells packet stability of the device for well trajectory management

Author(s):  
М. P. Oleksiuk ◽  
R. V. Rachkevych ◽  
І. І. Yatsyniak ◽  
І. О. Rachkevych ◽  
V. М. Ivasiv

Overview of equipment for management of a trajectory of directional and horizontal wells during drill process was done in the article. Both domestic and foreign equipment are described. Based on the critical analyses, most promising designs were chosen and were described their base disadvantage: restriction of range of changing of curvature angle of deflecting tool through some design features. Based on mentioned above, modern device for management of directional and horizontal wells trajectory was suggested. Advanced unit for curvature of deflecting tool’s axle is fundamentals of construction. Using of the elastic shells packet that loses stability by critical axial load and gets small longitudinal deformation is the main innovation. Further, it is a reason of unlocking the mutual movement of specific elements of the device and buckling of its axis on preset angle. That’s why angle of deflecting tool curvature does not depend of absolute longitudinal deformation of the elastic shells packet and, as result, is not restricted by them. Deflecting tool’s axis gets the rectilinear shape after a drill string is torn off from a downhole. So, there is possible to manage a well axis during drilling process using stretching and compression of the deflecting tool. The elastic shells packet that consists of variable quantity of shells is used for setting necessary compression force that switches device in regime of curvature. Stability of the packet was analyzed by 3D-modeling and finite element method. The magnitude of critical force is determined depending on the number of shells in the packet. Was mentioned, this dependence is rectilinear. There is a possibility, by selecting the number of shells in the elastic shells packet, to manage magnitude of axial compression force that causes bend of the deflecting tool’s axis considering needed bit load.

Author(s):  
Mazeda Tahmeen ◽  
Geir Hareland ◽  
Bernt S. Aadnoy

The increasing complexity and higher drilling cost of horizontal wells demand extensive research on software development for the analysis of drilling data in real-time. In extended reach drilling, the downhole weight on bit (WOB) differs from the surface seen WOB (obtained from on an off bottom hookload difference reading) due to the friction caused by drill string movement and rotation in the wellbore. The torque and drag analysis module of a user-friendly real-time software, Intelligent Drilling Advisory system (IDAs) can estimate friction coefficient and the effective downhole WOB while drilling. IDAs uses a 3-dimensional wellbore friction model for the analysis. Based on this model the forces applied on a drill string element are buoyed weight, axial tension, friction force and normal force perpendicular to the contact surface of the wellbore. The industry standard protocol, WITSML (Wellsite Information Transfer Standard Markup Language) is used to conduct transfer of drilling data between IDAs and the onsite or remote WITSML drilling data server. IDAs retrieves real-time drilling data such as surface hookload, pump pressure, rotary RPM and surface WOB from the data servers. The survey data measurement for azimuth and inclination versus depth along with the retrieved drilling data, are used to do the analysis in different drilling modes, such as lowering or tripping in and drilling. For extensive analysis the software can investigate the sensitivity of friction coefficient and downhole WOB on user-defined drill string element lengths. The torque and drag analysis module, as well as the real-time software, IDAs has been successfully tested and verified with field data from horizontal wells drilled in Western Canada. In the lowering mode of drilling process, the software estimates the overall friction coefficient when the drill bit is off bottom. The downhole WOB estimated by the software is less than the surface measurement that the drillers used during drilling. The study revealed verification of the software by comparing the estimated downhole WOB with the downhole WOB recorded using a downhole measuring tool.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


2012 ◽  
Vol 524-527 ◽  
pp. 1232-1235 ◽  
Author(s):  
Li Feng Li ◽  
Xiang An Yue ◽  
Li Juan Zhang

Finding the breakthrough position of horizontal wells is essential to water plugging and improving oil production in bottom water drive reservoirs. Physical modeling was carried out in this paper to research the law of bottom water’s movement. The experimental results indicated that: pressure drop in wells, well trajectory and area reservoir heterogeneity were all sensitive factors for breakthrough of bottom water, and the entry points of horizontal wells were determined by the combined function of them. In different well trajectory models, the concave down part of the well cooperate with pressure drop influenced the breakthrough position. Bottom water below the heel end reached the well earliest if the concave down part located at the heel end. When the concave part located at the middle of the well, the two factors played role respectively which resulted in breaking through of bottom water at two places with larger swept area. In different heterogeneous models, permeability difference and pressure drop were both favorable factors for bottom water’s non-uniformly rise. In the model that the heel end located at high permeability part, bottom water under the heel end reached the well earliest. If the heel end was set at the low permeability part, the breakthrough of bottom water occurred at the middle of the well.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


2011 ◽  
Vol 291-294 ◽  
pp. 1952-1956 ◽  
Author(s):  
Xue Liang Bi ◽  
Jian Wang ◽  
Zhan Lin Wang ◽  
Shi Hui Sun

In the drilling process, axial vibration, transverse vibration and torsional vibration happen to drilling string. And the coupled vibration is more complex. In the resonance state, drilling string collides with the wall, which causes serious damage on drilling string in a short time and results in economic loss to the drilling operation. In this paper, the regularity of coupled vibration is analyzed by using finite element method. The model of full-hole drilling strings is established. The distribution regularities of coupled resonant frequency are obtained through computer analysis. The coupled model is more accurate than single vibration model. And the gaps of high rotary speed resonance regions are larger. Resonance state can be avoided by changing rotary speed, and drilling accidents can be reduced.


2021 ◽  
Author(s):  
Yaowen Liu ◽  
Wei Pang ◽  
Jincai Shen ◽  
Ying Mi

Abstract Fuling shale gas field is one of the most successful shale gas play in China. Production logging is one of the vital technologies to evaluate the shale gas contribution in different stages and different clusters. Production logging has been conducted in over 40 wells and most of the operations are successful and good results have been observed. Some previous studies have unveiled one or several wells production logging results in Fuling shale gas play. But production logging results show huge difference between different wells. In order to get better understanding of the results, a comprehensive overview is carried out. The effect of lithology layers, TOC (total organic content), porosity, brittle mineral content, well trajectory is analyzed. Results show that the production logging result is consistent with the geology understanding, and fractures in the favorable layers make more gas contribution. Rate contribution shows positive correlation with TOC, the higher the TOC, the greater the rate contribution per stage. For wells with higher TOC, the rate contribution difference per stage is relatively smaller, but for wells with lower TOC, it shows huge rate contribution variation, fracture stages with TOC lower than 2% contribute very little, and there exist one or several dominant fractures which contributes most gas rate. Porosity and brittle minerals also show positive effect on rate contribution. The gas rate contribution per fracture stage increases with the increase of porosity and brittle minerals. The gas contribution of the front half lateral and that of latter half lateral are relatively close for the "upward" or horizontal wells. However, for the "downward" wells, the latter half lateral contribute much more gas than the front half lateral. It is believed that the liquid loading in the toe parts reduced the gas contribution in the front half lateral. The overview research is important to get a compressive understanding of production logging and different fractures’ contribution in shale gas production. It is also useful to guide the design of horizontal laterals and fractures scenarios design.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Chong Ke ◽  
Xingyong Song

Abstract This paper proposed an equivalent input disturbance (EID)-based approach to control the vertical down-hole drilling process. To describe a drill string which is typically long with large axial-to-radius ratio, a neutral-type model is used to accurately capture dynamics of this type of slender string structure. The axial-torsional coupling effect due to drill bit/rock interaction is also included in the model. A new controller is then designed based on the coupled neutral model, and the coupling effect is specifically addressed in the design. To address the uncertainty of the bit/rock interaction, the EID method is used. A new Lyapunov–Krasovskii functional is proposed for the control design. To this end, a series of numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.


Author(s):  
Jialin Tian ◽  
Genyin Li ◽  
Liming Dai ◽  
Lin Yang ◽  
Hongzhi He ◽  
...  

Torsional stick–slip vibrations easily occur when the drill bit encounters a hard or a hard-soft staggered formation during drilling process. Moreover, serious stick–slip vibrations of the drill string is the main factor leading to low drilling efficiency or even causing the downhole tools failure. Therefore, establishing the stick–slip theoretical model, which is more consistent with the actual field conditions, is the key point for new drilling technology. Based on this, a new torsional vibration tool is proposed in this paper, then the multidegree-of-freedom torsional vibrations model and nonlinear dynamic model of the drill string are established. Combined with the actual working conditions in the drilling process, the stick–slip reduction mechanism of the drill string is studied. The research results show that the higher rotational speed of the top drive, smaller viscous damping of the drill bit, and smaller WOB (weight on bit) will prevent the stick–slip vibration to happen. Moreover, the new torsional vibration tool has excellent stick–slip reduction effect. The research results and the model established in this paper can provide important references for reducing the stick–slip vibrations of the drill string and improving the rock-breaking efficiency.


2013 ◽  
Vol 845 ◽  
pp. 81-85
Author(s):  
D. Sujan ◽  
C.W. Nguong ◽  
S.N.B. Lee ◽  
Mesfin G. Zewge

This paper attempts to explain the motion behaviour of the marine riser coupled to a drill string when the vortex induced vibration (VIV) is involved. Vibrations have been reported to have a major effect on the drilling performance, affecting the rate of penetration (ROP), causing severe damages to the drilling tools and also reduces the efficiency of the drilling process. There are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling string. Analysis of vibration in the marine riser and drill string are two topical areas that have individually received considerable attention by researchers in the past. Though these two subjects are interrelated, borne by the fact that the marine riser encapsulates and protects the drill pipe, there have been few attempts to investigate them together as a unity. Due to the complexities of the models, simplified assumptions were made in order to undertake the investigation by using staggered approach. The results were compared with the experimental and simulation data from the open literature. It was found that the maximum displacement with negative damping occurs at low frequency and rotation speed.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Faraz Shah ◽  
Ilia G. Polushin

The paper deals with the design of control algorithms for virtual reality based telerobotic system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using a haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the stiffness of the rock currently being cut. Based on the existing mathematical models of drill string/drive systems and rock cutting/penetration process, a robust servo controller is designed which guarantees the tracking of the reference vertical penetration velocity of the drill bit. A scheme for on-line estimation of the rock intrinsic specific energy is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally, where the drilling process is simulated in real time in virtual environment.


Sign in / Sign up

Export Citation Format

Share Document