scholarly journals ANALYSIS OF THE HEATING CAPACITY OF ELECTRICALLY HEATED WINDOWS

2021 ◽  
Vol 43 (4) ◽  
pp. 62-67
Author(s):  
P.G. Krukovskyi ◽  
D.A. Smolchenko ◽  
G.P. Krukovskyi ◽  
А.І. Deineko

Electric window heating has been used for some time in Europe and the Americas, but in Ukraine it only enters the market as an independent heating device and raises the question of its heating capacity in winter and the benefits of using them. There are several works in this field that determine the efficiency and contribution to the energy needs of an electric-heated window house, but it is necessary to answer more specifically the question of the heating capacity of such windows as a single heating system, for example rooms of certain sizes.In the work present the design, thermophysical processes occurring in such windows and, by computer simulation of the thermal state of the window with the selected typical room, the results of the study of the heating capacity of the windows, depending on the relative glazing area to the total area of the outer enclosure and the ambient temperature conditions not exceeding the maximum heat emission 450 /  and temperature 45 °С on the inner glass of the double-glazed window. the presented thermal model of the window with the room is implemented as a computer program with the possibility of a detailed analysis of the heating capacity of the window, depending on the parameters of the room and the outside temperature, as well as optimization of operational parameters to maintain comfortable conditions.

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2487 ◽  
Author(s):  
Heng Chen ◽  
Zhen Qi ◽  
Qiao Chen ◽  
Yunyun Wu ◽  
Gang Xu ◽  
...  

A conceptual high-back pressure (HBP) heating system cooperating raw coal pre-drying for combined heat and power (CHP) was proposed to improve the performance of the HBP-CHP unit. In the new design, besides of heating the supply-water of the heating network, a portion of the exhaust steam from the turbine is employed to desiccate the raw coal prior to the coal pulverizer, which further recovers the waste heat of the exhaust steam and contributes to raising the overall efficiency of the unit. Thermodynamic and economic analyzes were conducted based on a typical 300 MW coal-fired HBP-CHP unit with the application of the modified configuration. The results showed that the power generation thermal efficiency promotion of the unit reaches 1.7% (absolute value) owing to suggested retrofitting, and meanwhile, the power generation standard coal consumption rate is diminished by 5.8 g/kWh. Due to the raw coal pre-drying, the energy loss of the exhaust flue gas of the boiler is reduced by 19.1% and the boiler efficiency increases from 92.7% to 95.4%. The impacts of the water content of the dried coal and the unit heating capacity on the energy-saving effect of the new concept were also examined.


2014 ◽  
Vol 18 (5) ◽  
pp. 1667-1672 ◽  
Author(s):  
Hai-Jun Li ◽  
Guang-Hui Zhou ◽  
An-Gui Li ◽  
Xu-Ge Li ◽  
Ya-Nan Li ◽  
...  

When the ordinary heat pump air conditioning system of a pure electric vehicle runs at ultra-low temperature, the discharge temperature of compressor will be too high and the heating capacity of the system will decay seriously, it will lead to inactivity of the heating system. In order to solve this problem, a modification is put forward, and an experiment is also designed. The experimental results show that in the same conditions, this new heating system increases more than 20% of the heating capacity; when the outside environment temperature is negative 20 degrees, the discharge temperature of compressor is below 60 degrees.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5867
Author(s):  
Robert Lehmann ◽  
Arthur Petuchow ◽  
Matthias Moullion ◽  
Moritz Künzler ◽  
Christian Windel ◽  
...  

In this publication, the cooling fluid for direct oil-cooled electric traction drive is investigated. A dedicated thermal resistance model was developed in order to show the influence of the fluid properties on the continuous performance. For this purpose, the heat transfer parameters are adjusted in the simulation using an exponential approach in order to evaluate the cooling fluid. In a sensitivity study, density, heat capacity, thermal conductivity, and viscosity are investigated. Because viscosity, within the range investigated, shows the largest percentage deviation from the reference fluid, the greatest effect on performance can be seen here. In order to check the plausibility of the calculated results of the thermal simulation, two fluids were chosen for performance testing on a dedicated electro motor cooling (EMC) test. Beyond the investigation of heat transfer, aging of the defined fluid at maximum heat input over several hours is also evaluated. Only slight changes of the fluid properties are detected. This publication presents a thermal model for direct oil-cooled drive trains, which consider fluid properties. Furthermore, the model was tested for plausibility on real hardware.


2013 ◽  
Vol 300-301 ◽  
pp. 794-801
Author(s):  
Lu Fan Zhang ◽  
Xue Li Li ◽  
Ji Wen Fang ◽  
Jian Dong Cai ◽  
Long Sheng Nian ◽  
...  

A constant temperature range of the heating system plays an important role in the thermosonic bonding process. Heating block will provide enough heat for the heating system. In the paper, the thermal model of heating block and heating system were calculated by finite element method, and then some important conclusions were obtained. The change of temperature and thermal stress of block with the reference value of x and y was obtained. And an optimal structure of block for right temperature was built. The temperature distribution, thermal displacement and thermal stress distribution of the heating block and heating system were disclosed. The relevant change trends of temperature and thermal stress under the different load of temperature were investigated. These results can help improve the reliability of the heating system used in the thermosonic bonding process.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5495
Author(s):  
Karol Tucki ◽  
Olga Orynycz ◽  
Andrzej Wasiak ◽  
Antoni Świć ◽  
Leszek Mieszkalski ◽  
...  

The paper concerns the analysis of harmful emissions during the combustion process in households. The subject of the analysis is a low emission heating device with an output of 50 kW for burning biomass of forest origin (low-quality hardwoods or softwoods). The proposed boiler is automatically fed from the connected container by means of a screw conveyor. In this way, the optimum amount of fuel is supplied for maximum heat output (adjustment of the ratio of primary air to fuel). The proposed biomass heating system is equipped with a primary and secondary air supply system and exhaust gas sensors. This ensures optimal regulation of the air mixture and efficient and clean combustion. Proper control of the combustion process, control of the air supply by means of a lambda sensor and power control of the system ensure a low-emission combustion process. The system precisely adjusts to the heat demand. This results in highly efficient heating technology with low operating costs. In the presented work, the emission of exhaust gases from the proposed heating device during the combustion of woodchips and beech–oak pellets were measured. It is demonstrated that the proposed design of the boiler equipped with intelligent control significantly reduces emissions when the biomass solid fuels are used, e.g., CO emissions from beech and oak chips and pellets in the low-emission boiler—18 extract pipes shows the value <100 ppm, which is even lower than when gas is burned in the other boilers; on the other hand, the pine chips show even higher emission when burned in the low-emission burner. Consequently, the choice of biomass source and form of the fuel play some role in the emissions observed.


2015 ◽  
Vol 5 (2) ◽  
pp. 107-112
Author(s):  
Aleksandr Anatol'evich CHULKOV

The results of experimental studies of thermal state of heat transport lines are viewed. Ready-to-use PU foarm unsulation in polyethylene sheath is taken as thermal insulation of heating system lines under the ground. Readyto- use PU foarm unsulation in sheet galvanized steel sheath is taken as thermal insulation of heating system lines aboveground. Experimental results permit to determine real heat losses of heat transport systems.


2012 ◽  
Vol 170-173 ◽  
pp. 2743-2746
Author(s):  
Feng Li ◽  
Zhe Tian ◽  
Qiang Fu ◽  
Qian Ru Li

The double-energy heating system studied in this paper is consisted of centrifugal sewage-source heat pumps and gas boilers. As the grade and price of the two kinds of energy are different, the heating capacity of the heat-source equipments would have a directly impact on the energy consumption and operating cost of the system. In order to obtain the optimal heating capacity of the heat-source equipments, the calculation models on equipments utilized in this system are firstly established, and then different combination patterns of the heat-source equipments were analyzed on the basis of minimum operating cost, finally, the optimal heating capacity of the heat-source equipments and the heating performance factor (HPF) of the system in different outdoor temperatures were obtained, the results indicate the average HPF of the system in the heating period is 3.57. The method and results provide reference for scientific design of the double-energy heating system.


Sign in / Sign up

Export Citation Format

Share Document