scholarly journals Evaluating the Anticancer Potentials of Methanol Extracted Annona muricata Fruit Pulp and Seed(s) Phytochemicals

2020 ◽  
pp. 1-8
Author(s):  
D. Devananda ◽  
Shashanka K Prasad ◽  
D. Devananda

Annona muricata L. has been widely used in traditional medicine for the treatment of various diseases ranging from fever to cancer. In this study, we evaluate the in vitro anticancer potential of methanol extracted A. muricata fruit pulp (AMPM) and seeds (AMSM) phytochemicals against breast (MCF-7), cervical (HeLa), prostate (PC-3) and colorectal (HCT-116) cancer cell lines. Additionally, the in vitro antiinflammatory and antioxidant activities of the extracts have been carried. The findings suggest that the AMSM is the most potent among the either extracts. Notwithstanding, both AMPM and AMSM showed significant dose and cell line-dependent anticancer potential(s).

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3923
Author(s):  
Adel A.-H. Abdel-Rahman ◽  
Amira K. F. Shaban ◽  
Ibrahim F. Nassar ◽  
Dina S. EL-Kady ◽  
Nasser S. M. Ismail ◽  
...  

New pyridine, pyrazoloyridine, and furopyridine derivatives substituted with naphthyl and thienyl moieties were designed and synthesized starting from 6-(naphthalen-2-yl)-2-oxo-4-(thiophen-2-yl)-1,2-dihydropyridine-3-carbonitrile (1). The chloro, methoxy, cholroacetoxy, imidazolyl, azide, and arylamino derivatives were prepared to obtain the pyridine-−C2 functionalized derivatives. The derived pyrazolpyridine-N-glycosides were synthesized via heterocyclization of the C2-thioxopyridine derivative followed by glycosylation using glucose and galactose. The furopyridine derivative 14 and the tricyclic pyrido[3′,2′:4,5]furo[3,2-d]pyrimidine 15 were prepared via heterocyclization of the ester derivative followed by a reaction with formamide. The newly synthesized compounds were evaluated for their ability to in vitro inhibit the CDK2 enzyme. In addition, the cytotoxicity of the compounds was tested against four different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549). The CDK2/cyclin A2 enzyme inhibitory results revealed that pyridone 1, 2-chloro-6-(naphthalen-2-yl)-4-(thiophen-2-yl)nicotinonitrile (4), 6-(naphthalen-2-yl)-4-(thiophen-2-yl)-1H-pyrazolo[3,4-b]pyridin-3-amine (8), S-(3-cyano-6-(naphthaen-2-yl)-4-(thiophen-2-yl)pyridin-2-yl) 2-chloroethanethioate (11), and ethyl 3-amino-6-(naphthalen-2-yl)-4-(thiophen-2-yl)furo[2,3-b]pyridine-2-carboxylate (14) are among the most active inhibitors with IC50 values of 0.57, 0.24, 0.65, 0.50, and 0.93 µM, respectively, compared to roscovitine (IC50 0.394 μM). Most compounds showed significant inhibition on different human cancer cell lines (HCT-116, MCF-7, HepG2, and A549) with IC50 ranges of 31.3–49.0, 19.3–55.5, 22.7–44.8, and 36.8–70.7 μM, respectively compared to doxorubicin (IC50 40.0, 64.8, 24.7 and 58.1 µM, respectively). Furthermore, a molecular docking study suggests that most of the target compounds have a similar binding mode as a reference compound in the active site of the CDK2 enzyme. The structural requirements controlling the CDK2 inhibitory activity were determined through the generation of a statistically significant 2D-QSAR model.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Vincenza Barresi ◽  
Carmela Bonaccorso ◽  
Domenico A. Cristaldi ◽  
Maria N. Modica ◽  
Nicolò Musso ◽  
...  

Recent drug discovery efforts are highly focused towards identification, design, and synthesis of small molecules as anticancer agents. With this aim, we recently designed and synthesized novel compounds with high efficacy and specificity for the treatment of breast tumors. Based on the obtained results, we constructed a Volsurf+ (VS+) model using a dataset of 59 compounds able to predict the in vitro antitumor activity against MCF-7 cancer cell line for new derivatives. In the present paper, in order to further verify the robustness of this model, we report the results of the projection of more than 150 known molecules and 9 newly synthesized compounds. We predict their activity versus MCF-7 cell line and experimentally verify the in silico results for some promising chosen molecules in two human breast cell lines, MCF-7 and MDA-MB-231.


2020 ◽  
Vol 10 (6) ◽  
pp. 2170 ◽  
Author(s):  
Mohammad Shahidul Islam ◽  
Abdullah Mohammed Al-Majid ◽  
Fardous F. El-Senduny ◽  
Farid A. Badria ◽  
A. F. M. Motiur Rahman ◽  
...  

A one-pot, single-step, and an atom-economical process towards the synthesis of highly functionalized spirooxindoles analogues was efficiently conducted to produce a satisfactory chemical yields (70–93%) with excellent relative diastereo-, and regio-selectivity. An in vitro antiproliferative assay was carried out on different cancer cell lines to evaluate the biological activity of the synthesized tetrahydro-1’H-spiro[indoline-3,5’-pyrrolo[1,2-c]thiazol]-2-one 5a–n. The prepared hybrids were then tested in vitro for their antiproliferative effects against three cancer cell lines, namely, HepG2 (liver cancer), MCF-7 (breast cancer), and HCT-116 (colon cancer). The spirooxindole analogue 5g exhibited a broad activity against HepG2, MCF-7, and HCT-116 cell lines of liver, breast, and colorectal cancers when compared to cisplatin. Modeling studies including shape similarity, lipophilicity scores, and physicochemical parameters were calculated. The results of this study indicated that spirooxindole analogue 5g retained a good physiochemical parameters with acceptable lipophilicity scores.


2020 ◽  
Vol 23 ◽  
pp. 77-82
Author(s):  
E.O. Ikpefan ◽  
B.A. Ayinde ◽  
B.A. Mudassar ◽  
Ahsana Dar Farooq

The in vitro antiproliferative and antioxidant studies of the leaf extract and fractions of Conyza sumatrensis was investigated by applying the Sulforhodamine-B and 2, 2-diphenyl-1-picrylhydrazyl assays (DPPH-RSA) respectively. While the antiproliferative activity was carried out at 1-250 and 1-100 μg/ mL for the extract and fractions against breast (MCF-7) and lung (NCI-H460) cancer cell lines, the antioxidant study was conducted using DPPH at 31.25 -500 μg/ mL with the total phenolic and flavonoid contents calculated as well with reference to quercetin and gallic acid respectively. The extract and fractions were observed to elicit cytotoxic and growth inhibitory effects against breast (MCF-7) and lung cancer cell lines (NCI-H460) respectively. At 250 μg/mL, the extract of C. sumatrensis gave cytotoxicity of –1.76 ± 0.20 % against MCF-7 cell lines and inhibited growth of NCI-H460 at +94.40 ± 1.0 % respectively. While the chloroform fraction at 100 μg/mL gave -5.38 ± 0.33 % and 91 ± 1.61 % against MCF-7 and NCI-H460 cell lines, the aqueous fraction was observed to be inactive. For the DPPH-RSA activity, the chloroform fraction demonstrated an IC50 value of 125.5 μg/ mL compare to quercetin at 62.5 μg/ mL. The bioactivities were more pronounced in the chloroform fraction. This work has shown that C.  sumatrensis has antiproliferative and antioxidant activities which could be tied to the secondary metabolites present in the plant.


2020 ◽  
Vol 16 (6) ◽  
pp. 750-760
Author(s):  
Mona A. Hosny ◽  
Yasser H. Zaki ◽  
Wafaa A. Mokbel ◽  
Abdou O. Abdelhamid

Background: Pyrazole and its derivatives are known to exhibit significant biological and pharmacological activities such as anticancer, anti-inflammatory, antioxidant, antibacterial, analgesic, antiviral, antimicrobial, antifungal, anti-glycemic, antiamoebic, and antidepressive. Considering the immense biological properties, pyrazole is one of the most widely studied nitrogen- containing heterocyclic nuclei. Fused pyrazole derivatives are composed of the pyrazole nucleus attached to other heterocyclic moieties. Objective: The objective of this article is the synthesis of some new pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c]1,2,4-triazine derivatives with potential anticancer and antimicrobial activities. Methods: The in vitro growth inhibitory rates (%) and inhibitory growth activity (as measured by IC50) of the newly synthesized compounds were determined against the MCF-7 human breast carcinoma cell line in comparison with the well-known anticancer drug doxorubicin as the standard, using the MTT viability assay. The data generated were used to plot a dose-response curve from which the concentration (μM) of tested compounds required to kill 50% of the cell population (IC50) was determined. Cytotoxic activity was expressed as the mean IC50 of three independent experiments. The difference between inhibitory activities of all compounds with different concentrations was statistically significant p < 0.001. All compounds were structurally characterized by different spectroscopic techniques EI-MS, 1H-NMR, and 13C-NMR, and evaluated for their anticancer and antimicrobial activities (antibacterial and antifungal). Results: Several pyrazolo[1,5-a]pyrimidine derivatives were synthesized from the reaction of 2-(4- (5-amino-1H-pyrazol-3-yl)phenyl)-1H-indene-1,3(2H)-dione with the appropriate active methylene compounds in boiling ethanol. Also, pyrazolo[5,1-c]triazines were obtained through the reaction of 2-(4-(5-(chlorodiazenyl)-1H-pyrazol-3-yl)phenyl)-1H-indene-1,3(2H)-dione with various active methylene compounds in ethanol containing sodium acetate at 0-5 °C. The structures of the newly synthesized compounds were elucidated on the basis of elemental analysis, spectral data, and alternative synthetic routes whenever possible. The newly synthesized compounds were evaluated for their antitumor activity against a breast cancer cell line (MCF-7) and a human colon cancer cell line (HCT-116). The results revealed that the tested compounds showed high variation in the inhibitory growth rates and activities against the tested tumor cell lines. All newly synthesized compounds screen towards microorganisms e.g. Gram-negative bacteria, Gram-positive bacteria, and Fungi. Conclusions: 2-(4-(5-Amino-1H-pyrazol-3-yl)phenyl)isoindoline-1,3-dione proved to be a useful precursor for the synthesis of various pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c]-1,2,4- triazines. The structures of the newly synthesized compounds were confirmed by spectral data and elemental analyses. The newly synthesized compounds were tested in vitro against the MCF-7, HCT-116 human cancer cell line and compared with doxorubicin as the standard, using the MTT viability assay. Most of the tested compounds were found to have moderate to high anticancer activity.


2019 ◽  
Vol 16 ◽  
Author(s):  
Alaa M. Abo Alnaja ◽  
Thoraya. A. Farghaly ◽  
Heba S. A. El-zahabi ◽  
Mohamed R. Shaaban

Background: Azolopyrimidines are imposed on the arena of drugs treated for cancer. The urgent need to discover new selective anticancer agents, paved the way to explore the antitumor significance of such fused systems. From synthetic point of view, Microwave- facilitated technique for synthesis is very strongly associated with green method in chemistry field. Aim: Our aim is to synthesis of bioactive compounds and using docking simulation run by MOE program to explore the binding mode of the most active enzyme inhibitor among the target compounds. Method: In addition to the use of conventional heating, the MARS system of CEM utilized for Microwave irradiation that is equipped with a multi-mode platform with a magnetic stirring plate and a rotor that allows the parallel processing of many vessels per batch. All the synthesized compounds were tested for their anticancer activity against hepatic cancer (HePG-2), breast cancer (MCF-7) and colon cancer (HCT-116). Screening against the cancer cell lines was performed, using doxorubicin as a reference drug. Docking studies were conducted using MOE software. Result: A novel series of fluorinated fused-pyrimidine namely, pyrazolopyrimidine, triazolopyrimidine and pyrimidobenzimidazole were designed and synthesized conventionally and under microwave irradiations The mechanistic pathways as well as the structure of all products were debated and demonstrated based on all possible spectral data. In-vitro examination of the novel prepared derivatives versus the three different human cancer cell lines [hepatic cancer (HePG-2), breast cancer (MCF-7) and colon cancer (HCT-116)] was evaluated to estimate their actual activity. Conclusion: We have developed a simple, facile, and efficient procedure for the formation of new series of azolopyrimidines. All spectra of all products were investigated deliberately to confirm their structures. The anti-cancer activity has been examined against three cancer cell lines e.g. HepG-2, MCF-7 and HCT116. Molecular modeling study was carried out in order to rationalize the in vitro anti-tumor results.


2022 ◽  
Vol 11 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Anees Pangal ◽  
Yusufi Mujahid ◽  
Bajarang Desai ◽  
Javed A. Shaikh ◽  
Khursheed Ahmed

Under solvent free conditions and in presence of a base 3-(2-(subsituted-(trifluoromethyl)phenylamino)acetyl)-2H-chromen-2-one derivatives were synthesized by grinding technique. Structural investigations were carried out with IR studies, HRMS, 1HNMR and 13CNMR. The compounds were checked for their in vitro anticancer activities against three different human cancer cell lines viz human breast cancer cell line (MCF-7), human cervical cancer cell line (HeLa) and human oral squamous cell carcinoma (SCC-40) using SRB method. All the title compounds showed low toxicity towards non-malignant PBMC cells indicating their tumour selectivity. The compounds exhibited good in vitro anti-proliferative potency at lower concentrations against HeLa and MCF-7 cell lines and remain moderately active against SCC-40.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3043 ◽  
Author(s):  
Victoria Abzianidze ◽  
Petr Beltyukov ◽  
Sofya Zakharenkova ◽  
Natalia Moiseeva ◽  
Jennifer Mejia ◽  
...  

New derivatives of phaeosphaeride A (PPA) were synthesized and characterized. Anti-tumor activity studies were carried out on the HCT-116, PC3, MCF-7, A549, К562, NCI-Н929, Jurkat, THP-1, RPMI8228 tumor cell lines, and on the HEF cell line. All of the compounds synthesized were found to have better efficacy than PPA towards the tumor cell lines mentioned. Compound 6 was potent against six cancer cell lines, HCT-116, PC-3, K562, NCI-H929, Jurkat, and RPMI8226, showing a 47, 13.5, 16, 4, 1.5, and 7-fold increase in anticancer activity comparative to those of etoposide, respectively. Compound 1 possessed selectivity toward the NCI-H929 cell line (IC50 = 1.35 ± 0.69 μM), while product 7 was selective against three cancer cell lines, HCT-116, MCF-7, and NCI-H929, each having IC50 values of 1.65 μM, 1.80 μM and 2.00 μM, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5983
Author(s):  
Ahdab N. Khayyat ◽  
Khaled O. Mohamed ◽  
Azizah M. Malebari ◽  
Afaf El-Malah

A new series of benzotriazole moiety bearing substituted imidazol-2-thiones at N1 has been designed, synthesized and evaluated for in vitro anticancer activity against the different cancer cell lines MCF-7(breast cancer), HL-60 (Human promyelocytic leukemia), and HCT-116 (colon cancer). Most of the benzotriazole analogues exhibited promising antiproliferative activity against tested cancer cell lines. Among all the synthesized compounds, BI9 showed potent activity against the cancer cell lines such as MCF-7, HL-60 and HCT-116 with IC50 3.57, 0.40 and 2.63 µM, respectively. Compound BI9 was taken up for elaborate biological studies and the HL-60 cells in the cell cycle were arrested in G2/M phase. Compound BI9 showed remarkable inhibition of tubulin polymerization with the colchicine binding site of tubulin. In addition, compound BI9 promoted apoptosis by regulating the expression of pro-apoptotic protein BAX and anti-apoptotic proteins Bcl-2. These results provide guidance for further rational development of potent tubulin polymerization inhibitors for the treatment of cancer.


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


Sign in / Sign up

Export Citation Format

Share Document