scholarly journals An Experimental Study on the Mix Proportions, Strength and Densities of Soil-Cement Concrete Substituted Cement with a Granulated Blast Furnace Slag

1999 ◽  
Vol 10 (1) ◽  
pp. 123-132
Author(s):  
Masashi Kawamura ◽  
Yoshio Kasai
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Yang ◽  
Qiang Wang ◽  
Yuqi Zhou

Plain cement concrete, ground granulated blast furnace slag (GGBS) concrete, and fly ash concrete were designed. Three wet curing periods were employed, which were 2, 5, and 8 days. The drying shrinkage values of the concretes were measured within 1 year after wet curing. The results show that the increasing rate of the drying shrinkage of concrete containing a mineral admixture at late age is higher than that of plain cement concrete regardless of the wet curing time. With the reduction of wet curing time, the increment of total drying shrinkage of concrete decreases with the decrease of the W/B ratio. The negative effects on the drying shrinkage of fly ash concrete due to the reduction of the wet curing time are much more obvious than those of GGBS concrete and plain cement concrete. Superfine ground granulated blast furnace slag (SGGBS) can reduce the drying shrinkage of GGBS concrete and fly ash concrete when the wet curing time is insufficient.


2021 ◽  
Vol 13 (2) ◽  
pp. 873
Author(s):  
Numanuddin M. Azad ◽  
S.M. Samindi M.K. Samarakoon

There has been a significant movement in the past decades to develop alternative sustainable building material such as geopolymer cement/concrete to control CO2 emission. Industrial waste contains pozzolanic minerals that fulfil requirements to develop the sustainable material such as alumino-silicate based geopolymer. For example, industrial waste such as red mud, fly ash, GBFS/GGBS (granulated blast furnace slag/ground granulated blast furnace slag), rice husk ash (RHA), and bagasse ash consist of minerals that contribute to the manufacturing of geopolymer cement/concrete. A literature review was carried out to study the different industrial waste/by-products and their chemical composition, which is vital for producing geopolymer cement, and to discuss the mechanical properties of geopolymer cement/concrete manufactured using different industrial waste/by-products. The durability, financial benefits and sustainability aspects of geopolymer cement/concrete have been highlighted. As per the experimental results from the literature, the cited industrial waste has been successfully utilized for the synthesis of dry or wet geopolymers. The review revealed that that the use of fly ash, GBFS/GGBS and RHA in geopolymer concrete resulted high compressive strength (i.e., 50 MPa–70 MPa). For high strength (>70 MPa) achievement, most of the slag and ash-based geopolymer cement/concrete in synergy with nano processed waste have shown good mechanical properties and environmental resistant. The alkali-activated geopolymer slag, red mud and fly ash based geopolymer binders give a better durability performance compared with other industrial waste. Based on the sustainability indicators, most of the geopolymers developed using the industrial waste have a positive impact on the environment, society and economy.


Sign in / Sign up

Export Citation Format

Share Document