scholarly journals INFLUENCE OF PORE STRUCTURE ON CARBONATION OF BELITE-BASED CEMENT CONCRETE USING GROUND GRANULATED BLAST-FURNACE SLAG AT LOW WATER/BINDER RATIO

2008 ◽  
Vol 64 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Susumu YOSHIDA ◽  
Toyoharu NAWA ◽  
Fumio TAGUCHI ◽  
Hiroshi WATANABE
2021 ◽  
Vol 8 ◽  
Author(s):  
Xiyao Zheng ◽  
Jun Wu

One-part or “just add water” geopolymer is a cementitious material, which is friendly to environment and users in applications. However, the mechanical behavior of the soft soil stabilized by one-part geopolymer is not well acknowledged. In this study, soft clay was stabilized with ground granulated blast furnace slag (GGBFS) and fly ash (FA)-based geopolymer, which is a mixture of solid aluminosilicate precursor (Al-Si raw materials: GGBFS and FA), solid alkali activator, and water. The objective was to adopt one-part geopolymer as an alternative soil binder to completely replace ordinary Portland cement (OPC) for stabilizing the soft clay and evaluate the effect of the factors (i.e., GBFS/FA ratio in Al-Si precursor, activator/Al-Si precursor ratio, and water/binder ratio) that influenced the early strength. Results showed that the increase of the FA content in the Al-Si precursor increased the unconfined compressive strength (UCS) values significantly through the geopolymerization process. The highest UCS values were achieved with 90% GGBFS to 10% FA in the precursor when the activator/precursor and water/binder ratio is 0.15 and 0.7, respectively. The UCS values of geopolymer-stabilized clay could reach 1.5 MPa at 14 days at ambient temperature, which is much higher than that of OPC-stabilized clay. The microstructure and mineralogy analyses indicated that the prolific hydration products, such as calcium silicate hydrate (C-S-H), calcium aluminum hydrate (C-A-H), and calcium aluminum silicate hydrate (C-A-S-H), contributed greatly to strengthen the soft clay by forming the soil skeleton and infilling among clay particles, while sodium aluminosilicate (N-A-S-H) gel is only served to fill the part of porosities in the soil and cannot effectively enhance the UCS of the one-part geopolymer-stabilized soft clay. This paper results suggested that one-part GGBFS-FA–based geopolymers have the potential to replace OPC in the manufacture of stabilized soft clay.


2019 ◽  
Vol 11 (24) ◽  
pp. 7194 ◽  
Author(s):  
Chiu Chuen Onn ◽  
Kim Hung Mo ◽  
Mohammed K. H. Radwan ◽  
Wen Hong Liew ◽  
Chee Guan Ng ◽  
...  

Ground granulated blast furnace slag (GGBFS) is a by-product obtained from the iron making process and has suitable properties to be utilized as high volume cement replacement to produce sustainable concrete. This study focuses on investigating the influence of GGBFS replacement level (0%–70%) and water/binder ratio (0.45 and 0.65) on the performance of cement mortar blends. In order to characterize the engineering performance, the compressive strength of the mortar blends was evaluated. Whereas to ascertain the carbon footprint, environmental life cycle assessment was conducted. Besides the compressive strength and carbon footprint, the materials cost for each mortar blends was computed. Based on the compressive strength/carbon footprint ratio analysis, it was found that increased replacement level of GGBFS gave better performance while the cost efficiency analysis shows that suggested GGBFS replacement level of up to 50%. Overall, in considering the strength performance, carbon footprint and materials cost, the recommended GGBFS replacement level for cement blends is 50%. In addition, when the binder content is kept constant, mortar blends with lower water/binder ratio is preferable when considering the same parameters.


2021 ◽  
Vol 17 ◽  
pp. 271-281
Author(s):  
Efstratios Badogiannis ◽  
Eirhnh Makrinou ◽  
Marianna Fount

A study on the durability parameters of normal and lightweight aggregate mortars, incorporated different supplementary cementitious materials (SCM) is presented. Mortars were prepared using limestone or pumice as aggregates and Metakaolin, Fly ash, Granulated Blast Furnace Slag and Silica Fume, as SCM, that they replaced cement, at 10 % by mass. Ten different mortars, having same water to binder ratio and aggregate to cement volumetric ratio, they were compared mainly in terms of durability. The use of pumice sand was proved to be effective not only to the density of the mortars as it was expected, but also in durability, fulfilling at the same time minimum strength requirements. The addition of the different SCM further enhanced the durability of the mortars, where Metakaolin was found to be the most effective one, especially against chloride’s ingress.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jun Yang ◽  
Qiang Wang ◽  
Yuqi Zhou

Plain cement concrete, ground granulated blast furnace slag (GGBS) concrete, and fly ash concrete were designed. Three wet curing periods were employed, which were 2, 5, and 8 days. The drying shrinkage values of the concretes were measured within 1 year after wet curing. The results show that the increasing rate of the drying shrinkage of concrete containing a mineral admixture at late age is higher than that of plain cement concrete regardless of the wet curing time. With the reduction of wet curing time, the increment of total drying shrinkage of concrete decreases with the decrease of the W/B ratio. The negative effects on the drying shrinkage of fly ash concrete due to the reduction of the wet curing time are much more obvious than those of GGBS concrete and plain cement concrete. Superfine ground granulated blast furnace slag (SGGBS) can reduce the drying shrinkage of GGBS concrete and fly ash concrete when the wet curing time is insufficient.


1984 ◽  
Vol 42 ◽  
Author(s):  
Della M. Roy ◽  
G. M. Idorn

AbstractSubstantial increases of the strength of cement paste and mortars may be obtained in conventional processing by optimizing the materials components, the rheology and the curing, and thereby improving the microstructures. Cementitious materials with high proportions of granulated blast-furnace slag have been investigated. Higher strengths of ASTM C 109 mortars were obtained with 40 to 65% substitution of portland cement by slag, than with ordinary mix compositions and processing.For one set of mixtures, 28 day strengths ≥ 100 MPa (some as high as 240 MPa) were consistently attained after curing at temperatures ranging from 27 to 250°C. The slag substitutions developed finer pore structures as revealed by intrusion porosimetry measurements, than those with pure portland cement. This is believed to be a major reason for their enhanced durability. At each stage from 3 to 28 days, increase of curing temperatures from 27 to 90°C decreased porosity and increased the strength, reflecting an increased maturity.Implications for practice and suggestions for further work are discussed.


2021 ◽  
Vol 13 (2) ◽  
pp. 873
Author(s):  
Numanuddin M. Azad ◽  
S.M. Samindi M.K. Samarakoon

There has been a significant movement in the past decades to develop alternative sustainable building material such as geopolymer cement/concrete to control CO2 emission. Industrial waste contains pozzolanic minerals that fulfil requirements to develop the sustainable material such as alumino-silicate based geopolymer. For example, industrial waste such as red mud, fly ash, GBFS/GGBS (granulated blast furnace slag/ground granulated blast furnace slag), rice husk ash (RHA), and bagasse ash consist of minerals that contribute to the manufacturing of geopolymer cement/concrete. A literature review was carried out to study the different industrial waste/by-products and their chemical composition, which is vital for producing geopolymer cement, and to discuss the mechanical properties of geopolymer cement/concrete manufactured using different industrial waste/by-products. The durability, financial benefits and sustainability aspects of geopolymer cement/concrete have been highlighted. As per the experimental results from the literature, the cited industrial waste has been successfully utilized for the synthesis of dry or wet geopolymers. The review revealed that that the use of fly ash, GBFS/GGBS and RHA in geopolymer concrete resulted high compressive strength (i.e., 50 MPa–70 MPa). For high strength (>70 MPa) achievement, most of the slag and ash-based geopolymer cement/concrete in synergy with nano processed waste have shown good mechanical properties and environmental resistant. The alkali-activated geopolymer slag, red mud and fly ash based geopolymer binders give a better durability performance compared with other industrial waste. Based on the sustainability indicators, most of the geopolymers developed using the industrial waste have a positive impact on the environment, society and economy.


2018 ◽  
Vol 7 (1) ◽  
pp. 19-23
Author(s):  
S. Thirupathiraj .

Cement is the core content for the concrete mix. Manufacturing of cement causes CO2 emission which leads to the pollution, health and environmental problems like global warming to control over the adverse effect we can prefer geopolymer concrete which is not a cement concrete. Factory wastes such as fly ash, ground granulated blast furnace slag (GGBS), silica fume and Metakaolin can be used as alternate for cement. This study mainly focus on the ratio of fly ash and ground granulated blast furnace slag (GGBS) for optimum levels which nearly matches the cement concrete properties. This study involves the various tests like slump flow, compression testing, split tensile strength and flexural strength of self-compacting geopolymer concrete. Self-compacting concrete is a highly flowable concrete that spreads into the form without the need of mechanical vibration. Self-compacting concrete is a non-segregating concrete that is placed by means of its own weight. The advantages include improved constructability, Labour reduction, bond to steel, Flow into complex forms, reduced equipment wear etc. The aim of this study is to achieve an optimum self-compacting concrete geopolymer concrete mix proportion using fly ash and ground granulated blast furnace slag (GGBS). Then the study will be further extended by investigating the durability properties of self-compacting geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document