scholarly journals Energy Saving Measures and Simulation in the Library Building of University of Surabaya

2018 ◽  
Vol 3 (1) ◽  
pp. 63
Author(s):  
Elieser Tarigan

The rapid rate use of fossil fuels globally results in many environmental problems. The adoption of energy efficient technology has the potential to substantially reduce the amount of energy used in buildings. This paper discuses the energy saving measures and simulation for a six-floor library building, University of Surabaya, Indonesia. Simulation was carried out using the Excellence in Design for Greater Efficiency (EDGE) simulation software. The results of simulation showed that 53% of energy efficiency can be reached, without lowering of the building comfort, by applying of four measures at the same time are daylight photoelectric sensors for internal spaces (OFE29), radiant cooling and heating system (OFE16), higher thermal performance glass (OFE8), and external shading devices (OFE4). The implementation of the four measures would result in reduction of 758 ton of CO2/year with a payback period of 2.2 years.Keywords: Energy efficiency, energy building, energy saving, library building, energy simulation Pemanfaatan energy fosil dalam jumlah yang besar secara global menimbulkan permasalahan berkaitan dengan lingkungan. Usaha untuk mengimplementasikan teknologi dalam penghematan energi sangat signifikan dalam penerapannya pada bangunan. Tulisan ini mendiskusikan parameter-parameter penghematan energi serta mensimulasikannya pada sebuah bangunan perpustakaan Universitas Surabaya yang terdiri dari 6 lantai. Simulasi dilakukan menggunakan sofware EDGE. Hasil simulasi menunjukkan bahwa kombinasi 4 parameter penghematan energi dapat memberikan penghematan energi hingga 53%. Parameter tersebut adalah daylight photoelectric sensors for internal spaces (OFE29), radiant cooling and heating system (OFE16), higher thermal performance glass (OFE8), dan external shading devices (OFE4). Implementasi keempat parameter tersebut akan mengurangi emisi karbodiokasida 758 ton per tahun dengan payback period sekitar 2,2 tahun.Kata kunci: Efisiensi energi, energi pada bangunan, hemat energi, bangunan perpustakaan, simulasi energi 

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6582
Author(s):  
Fangtian Sun ◽  
Yonghua Xie ◽  
Svend Svendsen ◽  
Lin Fu

Industrial exhausted heat can be used as the heat source of central heating for higher energy efficiency. To recover more industrial exhausted heat, a new low-temperature central heating system integrated with industrial exhausted heat using distributed electric compression heat pumps is put forward and analyzed from the aspect of thermodynamics and economics. The roles played by the distributed electric compression heat pumps in improving both thermal performance and financial benefit of the central heating system integrated with industrial exhausted heat are greater than those by the centralized electric compression heat pumps. The proposed low-temperature central heating system has higher energy efficiency, better financial benefit, and longer economical distance of transmitting exhausted heat, and thus, its configuration is optimal. For the proposed low-temperature central heating system, the annual coefficient of performance, annual product exergy efficiency, heating cost, and payback period are about 22.2, 59.4%, 42.83 ¥/GJ, and 6.2 years, respectively, when the distance of transmitting exhausted heat and the price of exhausted heat are 15 km and 15 ¥/GJ, respectively. The economical distance of transmitting exhausted heat of the proposed low-temperature central heating system could approach 25.1 km.


2018 ◽  
Vol 12 (3) ◽  
pp. 298-313 ◽  
Author(s):  
Nima Amani

Purpose This paper aims to investigate the optimum energy consumption of building atriums in hot, cold and dry climate zones in Iran. Design/methodology/approach This paper uses simulation software to analyze atrium design for energy saving in buildings and the effects of the energy saving process on the use of atrium in hot summer and cold winter zones in Iran. The buildings exhibit brick cavity concrete block plaster for wall, double-glazed alum frame for glaze, concrete slab on ground for flour and plaster insulation suspend for ceiling. This process is analyzed by choosing a suitable atrium for building energy efficiency in warmest session for warm weather conditions and the coldest session for cold weather conditions in Iran. Findings According to the analysis done using simulation software, with respect to the hot need prevention of direct and indirect solar energy and cold need absorption of direct and indirect solar energy, four-side atrium with total radiation incident of 2,506,027 and 69,613 W, radiation absorption of 902,795 and 29,057 W and radiation transmission of 297,118 and 4,201 W in hot summer and in cold winter are the best optimum selections. Originality/value The results of this research are useful for both building energy efficiency and producing a comfortable living environment in the future and will support new observations of how residential building developers can accept sustainable strategies to grow their overtaking in the Iranian construction market.


2012 ◽  
Vol 575 ◽  
pp. 122-125
Author(s):  
Juan Wang

Inner Mongolia mostly belongs to the rural residence building, no any relevant construction standard and building energy efficiency standards. Most of the farmers in build houses without considering building energy problems. This article through to a rural residential energy conservation calculation and analysis, and obtain the energy-saving index.


2012 ◽  
Vol 512-515 ◽  
pp. 2899-2903
Author(s):  
Xiao Mei Shen ◽  
Ju Wu Xu

With the deepening of the energy conservation of the building, energy saving from the original design of building energy-saving gradually turned to the field detection and completion acceptance, which requires a corresponding energy-efficient means of detection. With the development of infrared technology, the combination of infrared technology and detection methods of building energy-saving, to further promote the development of building energy efficiency testing work. Compared to the traditional heat flow meter or hot-box method, infrared thermal imaging method has no effect on the measured object, detecting the surface temperature of quick reaction speed, accompanying with wide temperature range and high precision, is widely used in various fields of testing work, which has been particularly prominent in the thermal defect detection. In this paper, the method of infrared thermography is used to confirm whether the thermal defects exist in energy-saving construction or not. Testing results show that infrared thermography can accurately reflect the temperature distribution of building wall surface. Infrared thermal imaging to detect the building surface's energy efficiency, which is providing efficient and accurate means of detection for the evaluation of the building energy efficiency. This is to help carry out a comprehensive building energy-saving testing.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2593 ◽  
Author(s):  
Reza Khakian ◽  
Mehrdad Karimimoshaver ◽  
Farshid Aram ◽  
Soghra Zoroufchi Benis ◽  
Amir Mosavi ◽  
...  

The energy performance of buildings and energy-saving measures have been widely investigated in recent years. However, little attention has been paid to buildings located in rural areas. The aim of this study is to assess the energy performance of two-story residential buildings located in the mountainous village of Palangan in Iran and to evaluate the impact of multiple parameters, namely building orientation, window-to-wall ratio (WWR), glazing type, shading devices, and insulation, on its energy performance. To attain a nearly zero energy building design in rural areas, the building is equipped with photovoltaic modules. The proposed building design is then economically evaluated to ensure its viability. The findings indicate that an energy saving of 29% can be achieved compared to conventional buildings, and over 22 MWh of electricity can be produced on an annual basis. The payback period is assessed at 21.7 years. However, energy subsidies are projected to be eliminated in the near future, which in turn may reduce the payback period.


2014 ◽  
Vol 587-589 ◽  
pp. 283-286 ◽  
Author(s):  
Mei Zhang

According to the current application situation and domestic energy of our current building energy efficiency design analysis software, in view of the current traditional energy-saving design method can't meet the need of practical problems, put forward the BIM (building information modeling) analysis technology and building energy consumption are combined, anew design method for energy saving building. Application of BIM technology to create virtual building model contains all the information architecture, the virtual building model into the building energy analysis software, identification, automatic conversion and analyzing a large number of construction data information includes in the model, which is convenient to get the building energy consumption analysis.


2013 ◽  
Vol 830 ◽  
pp. 416-421
Author(s):  
Mei Xiong

The constraints of resources and environment in China are more and more intense. The 12th Five-Year Plan requires that energy saving must be considered in the architectural design. Liangshan has special climate and sunshine. Therefore, the Government of Liangshan requires that building energy saving must be started from the stage of architectural design. Building energy efficiency must be considered from several aspects, such as architectural layout, wall structure, windows and doors, roof structure, external sun-shading, and construction materials.


2020 ◽  
Vol 10 (13) ◽  
pp. 4492
Author(s):  
Evangelos Bellos ◽  
Christos Tzivanidis

The objective of this study is the investigation of different solar concentrating collectors for application in a trigeneration system. Parabolic trough collectors, linear Fresnel reflectors and solar dishes are the examined solar concentrating technologies in this work. The trigeneration unit includes an organic Rankine cycle coupled with an absorption heat machine that operates with LiBr/water. The analysis is performed throughout the year by using the weather data of Athens in Greece. The results of this work indicate that the selection of parabolic trough collectors is the best choice because it leads to the maximum yearly system energy efficiency of 64.40% and to the minimum simple payback period of 6.25 years. The second technology is the solar dish with the energy efficiency of 62.41% and the simple payback period of 6.95 years, while the linear Fresnel reflector is the less efficient technology with the energy efficiency of 35.78% and with a simple payback period of 10.92 years. Lastly, it must be stated that the thermodynamic investigation of the system is performed with a created model in Engineering Equation Solver, while the dynamic analysis is performed with a code in the programming language FORTRAN.


2011 ◽  
Vol 225-226 ◽  
pp. 239-242 ◽  
Author(s):  
Hong Lei Ma ◽  
Jian Hui Niu

An energy saving residential building in Zhangjiakou was took as research object, which was designed and constructed according to the criterion of 65% energy saving of the third stage, utilizing simulation software Dest, which was developed by Qinghua University, energy consumption simulation and economic analysis were done to the building. The results show that compared with the former residence which was built according to the non-energy saving design, the implementation of new design standard for building energy saving can not only achieve better energy saving effect, but also its payback period is short, so the new design standard for building energy saving is worth spreading.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2195-2198
Author(s):  
Jie Li ◽  
Fang Wang ◽  
Wan Ying Qu ◽  
Wan Zhen Li

This paper analyzes that the climate characteristics in hot summer and cold winter zone make residents form a habit of using the energy intermittently, which reflects a good energy saving property and should be maintained. We find that the model of energy using has an impact on building costs; and these models determine the different technologies of building energy efficiency. It’s beneficial to adjust and update the conventional energy efficiency technical measures under the intermittent energy mode, exploring a preferable system of the residential energy efficiency technologies.


Sign in / Sign up

Export Citation Format

Share Document