Analysis of the state of hybrid wind power plants and their simulation

2021 ◽  
pp. 58-74
Author(s):  
V. Korobskyy ◽  
◽  
A. Proskura ◽  

The analysis of the provision of wind power plants of low power power supply to different consumers, taking into account the installed capacity and remoteness, is carried out. The expediency of using some design solutions of wind power plants with a horizontal axis of rotation, which are included in the power limitation up to 20 kW, is considered. It was found that low-power hybrid wind turbines equipped with storage devices are the most suitable option for providing power supply to consumers, where there is no centralized power grid within a radius of 20 km. It is noted that the most preferable for use are synchronous alternators over asynchronous or direct current generators. Two technical solutions for the operation of wind turbines are considered, one of which combines the traditional use of the installation with the consumer; and in the other - the connection of the wind turbine with an electric consumer using solar panels, a storage battery and a voltage inverter. It is noted that both options have their own advantages and disadvantages in practice, as well as a feature of the electromechanical system of wind turbines is the unpredictable and uncontrollable input of primary energy of a stochastic air flow, which leads to fluctuations in the output parameters (voltage and current frequency). Therefore, in order to eliminate this drawback and ensure the supply of electricity to consumers, the electricity generated by the generator will be used to charge the storage battery. It is noted that the disadvantages of traditional wind turbines create a significant contradiction, consisting in the emergence of the need to increase their energy efficiency of operation by improving the traditional design, on the one hand, and the inability of existing wind turbines to provide such an increase, on the other hand. In this case, the most rational solution may be the use of a wind turbine design with solar panels, which will ensure the operation of the wind turbine in a windless period and efficient adjustment of electrical payloads with increasing wind speed using the accumulated energy to power the current collectors. When conducting research in the field of wind energy, it is often necessary to use different models. The mathematical model describes a real object only with a certain degree of approximation (detail). In this case, the type of model depends both on the nature of the object under study and on the research tasks, modeling techniques, and the required accuracy of object description. The study proposes a simulation model of a wind power plant in the Simulink software application to estimate the generated power. The dependences of the design power of the wind turbine on the wind speed at three different radii of the wind turbine are obtained. Key words: wind power plant, consumer, installed capacity, renewable energy sources, wind speed, simulation, wind turbine, storage battery, generator, voltage inverter

2020 ◽  
Vol 6 (2) ◽  
pp. 64
Author(s):  
Randy Yonanda Pratama ◽  
Muldi Yuhendri

Wind turbines function as producers of mechanical power to drive generators in wind power plants. One factor that needs to be considered in the operation of wind turbines is the maximum capacity of the generator. Wind turbines must operate below the generator rating so as not to cause damage to the generator. Therefore, the operation of the wind turbine needs to be monitored and controlled to keep it operating within the generator rating limits. In this paper a horizontal axis wind turbine monitoring sistem is proposed using an Android smartphone. Wind turbine monitoring includes wind speed and turbine rotation speed parameters. This parameter data is obtained from sensors that are processed with Arduino Mega 2560. Data from Arduino is sent via the Bluetooth HC-04 module to be displayed on an Android smartphone. The experimental results show that the proposed wind turbine monitoring system has worked well. This can be seen from the wind speed and turbine rotation data that is displayed on android is exactly the same as the data on the measuring instrument


Author(s):  
Roman Albertovich Ilyin ◽  
Nickolai Dmitrievich Shishkin

The designs of wind power plants (wind turbines) and high-speed characteristics of a number of promising vessels using wind are considered. It has been shown that the vessels with sails of different types have the lowest average speed and do not exceed 16 knots. Greater average speed (about 17 knots) have wind-powered vessels with Flettner rotors, and the maximum average speed (19 knots) have wind-powered vessels with wind power plants, which testifies to greater efficiency of blade wind turbines. Estimation of the parameters of the combined vertical axis wind turbines based on H-Darrieus and Savonius rotors for a small wind-driven ship. With wind speed of 10 m/s and swept rotor area of 80 m2 the useful power of a small-size wind-driven ship with combined vertical axis wind turbine is 13 kW (18 h/p). When necessary, 2-4 combined vertical axis wind turbines can be placed on board the ship. With wind speed Vs = 10-15 m/s speed of a small vessel with combined vertical axis wind turbine can reach 14-20 knots. The use of combined vertical axis wind turbine can save up to 50 % of fuel, and the payback period will not exceed 4-5 years.


2014 ◽  
Vol 651-653 ◽  
pp. 1117-1122
Author(s):  
Zheng Ning Fu ◽  
Hong Wen Xie

Wind speed forecasting plays a significant role to the operation of wind power plants and power systems. An accurate forecasting on wind power can effectively relieve or avoid the negative impact of wind power plants on power systems and enhance the competition of wind power plants in electric power market. Based on a fuzzy neural network (FNN), a method of wind speed forecasting is presented in this paper. By mining historical data as the learning stylebook, the fuzzy neural network (FNN) forecasts the wind speed. The simulation results show that this method can improve the accuracy of wind speed forecasting effectively.


2018 ◽  
Vol 7 (3.5) ◽  
pp. 4
Author(s):  
Valeri Telegin ◽  
Nikolai Titov ◽  
Anatoli Stepanov

Power supply systems for small businesses based on renewable energy sources are most often based on converting wind energy, solar energy and water energy. Calculating its effectiveness is a time-consuming task, requiring the processing of a large amount of data specific for the geographical location of power generating units. In the article the technique of computer modeling of work of a park of wind power plants (WPP) with the purpose of definition of an optimum parity of their parameters is considered.   


2019 ◽  
Vol 9 (21) ◽  
pp. 4695 ◽  
Author(s):  
Esmaeil Ebrahimzadeh ◽  
Frede Blaabjerg ◽  
Torsten Lund ◽  
John Godsk Nielsen ◽  
Philip Carne Kjær

It is important to develop modelling tools to predict unstable situations resulting from the interactions between the wind power plant and the weak power system. This paper presents a unified methodology to model and analyse a wind power plant connected to weak grids in the frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays, which have been neglected in most of the previous research into modelling of wind power plants to simplify modelling. The presented approach combines both dq and positive/negative sequence domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the proposed modelling of the wind power plant is systematic and modular and based on the decoupled positive/negative sequence impedances, the application of the proposed methodology is relevant for transmission system operators (TSOs) to assess stability easily with a very low compactional burden. In addition, as the analytical dq impedance models of the single wind turbine are provided, the proposed methodology is an optimization design tool permitting wind turbine manufacturers to tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series capacitor compensation (Xc/Xg).


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jun Yang ◽  
Rui Zhang ◽  
Qiuye Sun ◽  
Huaguang Zhang

With the fast growth in the number and size of installed wind farms (WFs) around the world, optimal wind turbines (WTs) micrositing has become a challenge from both technological and mathematical points of view. An appropriate layout of wind turbines is crucial to obtain adequate performance with respect to the development and operation of the wind power plant during its life span. This work presents a fuzzy genetic algorithm (FGA) for maximizing the economic profitability of the project. The algorithm considers a new WF model including several important factors to the design of the layout. The model consists of wake loss, terrain effect, and economic benefits, which can be calculated by locations of wind turbines. The results demonstrate that the algorithm performs better than genetic algorithm, in terms of maximum values of net annual value of wind power plants and computational burden.


Author(s):  
Olga Krivenko

The relevance of the study is associated with the need to determine scientifically based principles for the design of wind-powered high-rise buildings. The article analyzes the main climatic parameters affecting the design of wind-powered high-rise buildings. While current research focuses mainly on the technical performance and savings of wind power plants (WPPs), modeling wind energy potential based on the analysis of climatic parameters allows you to optimize design solutions taking into account the influence of the environment. For various stages of the design of the integration of wind turbines into a high-rise building, it is important to take into account the dimensions of climate systems (macro, meso and micro levels), based on the laws operating within certain territorial boundaries. The article discusses the macroclimatic indicators that determine the total energy resource of wind in the region. The influence of the parameters of the mesoclimate on the wind potential has been determined, in accordance with the characteristics of the natural and anthropogenic environment (relief, the presence of forests, proximity to water bodies, urban development). The parameters that clarify the energy potential of the wind at the microclimatic level, taking into account the location of the wind turbine in the building, have been investigated. As a result of the analysis, a diagram of the structure of preliminary modeling of the energy wind potential at various climatic levels in the design of wind turbines in high-rise buildings has been determined. 


Sign in / Sign up

Export Citation Format

Share Document