scholarly journals SUBSTATIATION OF THE WORKING FLUID TEMPERATURE WHEN TESTING DIESEL INJECTORS

2019 ◽  
Vol 51 (3) ◽  
pp. 99-106
Author(s):  
A.V. Negovora ◽  
◽  
R.G. Magafurov ◽  
A.I. Nizamutdinov ◽  
◽  
...  

This paper substantiates the permissible temperature limits of the working fluid when testing diesel fuel equipment. The normative and technical documentation does not indicate the optimum temperature of the working fluid during the test. The results are confirmed by experimental data obtained on a device developed by the authors for evaluating the injection characteristics. The developed device was based on the method of fuel injection into a long pipeline. The tests revealed the effect of fuel temperature on the performance of diesel fuel equipment. Also, the tests proved that in order to obtain reliable indicators when diagnosing diesel fuel equipment it is necessary to stably maintain the operating temperature of the device in the range of 60 ± 5 °С.

Author(s):  
Yong Yi ◽  
Aleksandra Egelja ◽  
Clement J. Sung

The development of a very high pressure diesel fuel injection system has been one of the key solutions to improve engine performance and to reduce emissions. The diesel fuel management in the injector directly affects how the fuel spray is delivered to the combustion chamber, and therefore affects the mixing, combustion and the pollutants formation. To design such a very high pressure diesel fuel injection system, an advanced CFD tool to predict the complex flow in the fuel injection system is required in the robust design process. In this paper, a novel 3D CFD dynamic mesh with cavitation model is developed to simulate the dynamic response of the needle motion of a diesel fuel injector corresponding to high common rail pressure and other dimensional design variables, coupling with the imbalance of the spring force and the flow force (pressure plus viscous force). A mixture model is used for cavitation resulting from high speed flow in fuel injector. Due to the lack of experimental data, the model presented in this paper is only validated by a limited set of experimental data. Required meshing strategy is also discussed in the paper.


2015 ◽  
Vol 16 (2) ◽  
pp. 13-29
Author(s):  
Zakaria Mohd. Amin ◽  
M. N. A. Hawlader ◽  
YE Shaochun

Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC) is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i) water heating, (ii) drying and (iii) desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.


Author(s):  
C.-L. Ng ◽  
K. A. Sallam

The deformation of laminar liquid jets in gaseous crossflow before the onset of primary breakup is studied motivated by its application to fuel injection in jet afterburners and agricultural sprays, among others. Three crossflow Weber numbers that represent three different liquid jet breakup regimes; column, bag, and shear breakup regimes, were studied at large liquid/gas density ratios and small Ohnesorge numbers. In each case the liquid jet was simulated from the jet exit and ended before the location where the experimental data indicated the onset of breakup. The results show that in column and bag breakup, the reduced pressures along the sides of the jet cause the liquid to move to the sides of the jet and enhance the jet deformation. In shear breakup, the flattened upwind surface pushes the liquid towards the two sides of the jet and causing the gaseous crossflow to separate near the edges of the liquid jet thus preventing further deformation before the onset of breakup. It was also found out that in shear breakup regime, the liquid phase velocity inside the liquid jet was large enough to cause onset of ligament formation along the jet side, which was not the case in the column and bag breakup regimes. In bag breakup, downwind surface waves were observed to grow along the sides of the liquid jet triggered a complimentary experimental study that confirmed the existence of those waves for the first time.


Author(s):  
Ennio Macchi ◽  
Giampaolo Manzolini ◽  
Paolo Silva

The role of renewable energies and in particular solar energy could be fundamental in future scenarios of worldwide increase of energy demand: thermodynamic solar energy can play an important role in country with high solar radiation. This paper discusses the development and testing of an innovative code for the prediction of thermodynamic performances at nominal conditions and the estimation of costs of the whole plant, for different parabolic trough solar fields. The code allows a preliminary design of the solar field lay-out, the sizing of the main components of the plant and the optimization of the steam cycle. The code, named PATTO (PArabolic Trough Thermodynamic Optimization), allows to separately calculate the thermal efficiency of (i) parabolic trough systems in commerce as well as (ii) combination of components of various commercial systems, in order to exploit different technology solutions: combination of mirrors, receivers and supports. Using the selected parabolic troughs, the plant configuration is then completed by connecting pipes, heat exchangers, the steam cycle, and storage tanks. The code is also flexible in terms of working fluid, temperature and pressure range. Regarding the power block, a conventional steam cycle with super-heater and re-heater sections and up to seven regenerative bleedings is adopted. It is possible to use also simpler configuration as without re-heater or with less regenerative bleedings. Moreover, thanks to simple or sophisticated economic correlations depending on available data, the code calculates the overall investment cost for the considered solar field and the power block. The code performs steady state analysis at nominal conditions, while future developments are planned regarding part load analysis and transient simulations. The model is tested towards real applications and reference values found in literature; in particular, focusing on SEGS VI plant in the USA. Detailed results showing code potentiality, are presented in terms of solar field and power block energy balances, plant auxiliaries, piping and economic analysis.


Sign in / Sign up

Export Citation Format

Share Document