scholarly journals SEIITR Model for Diabetes Mellitus Distribution in Case of Insulin and Care Factors

2020 ◽  
Vol 5 (2) ◽  
pp. 100-106
Author(s):  
Nur Fajri ◽  
Sanusi ◽  
Asmaidi

This research is done to learn diabetes mellitus type SEIITR with insulin and care factors. Mathematical model type SEIITR is a mathematical model of diabetes in which the human population is divided into five groups: susceptible humans (Susceptible) S, exposed (Exposed) E, infected I without treatment, infected (Infected) IT  with treatment dan recovered (Recovery) R. The SEIITR model has two fixed points, namely, a fixed point without disease and an endemic fixed point. By using basic reproduction numbers (R0), it is found that the fixed point without disease is stable if R0 < 1 and when R0 > 1. Then the fixed point without disease is unstable. The simulation shows the effect of giving insulin to changes in the value of the basic reproduction number. If the effectiveness of β decreases, the basic reproduction number decreases too. Thus, a decrease in the value of this parameter will be able to help reduce the rate of diabetes mellitus in the population.

Author(s):  
Temidayo Oluwafemi ◽  
Emmanuel Azuaba

Malaria continues to pose a major public health challenge, especially in developing countries, 219 million cases of malaria were estimated in 89 countries. In this paper, a mathematical model using non-linear differential equations is formulated to describe the impact of hygiene on Malaria transmission dynamics, the model is analyzed. The model is divided into seven compartments which includes five human compartments namely; Unhygienic susceptible human population, Hygienic Susceptible Human population, Unhygienic infected human population , hygienic infected human population and the Recovered Human population  and the mosquito population is subdivided into susceptible mosquitoes  and infected mosquitoes . The positivity of the solution shows that there exists a domain where the model is biologically meaningful and mathematically well-posed. The Disease-Free Equilibrium (DFE) point of the model is obtained, we compute the Basic Reproduction Number using the next generation method and established the condition for Local stability of the disease-free equilibrium, and we thereafter obtained the global stability of the disease-free equilibrium by constructing the Lyapunov function of the model system. Also, sensitivity analysis of the model system was carried out to identify the influence of the parameters on the Basic Reproduction Number, the result shows that the natural death rate of the mosquitoes is most sensitive to the basic reproduction number.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


Author(s):  
Mojeeb Al-Rahman EL-Nor Osman ◽  
Appiagyei Ebenezer ◽  
Isaac Kwasi Adu

In this paper, an Immunity-Susceptible-Exposed-Infectious-Recovery (MSEIR) mathematical model was used to study the dynamics of measles transmission. We discussed that there exist a disease-free and an endemic equilibria. We also discussed the stability of both disease-free and endemic equilibria.  The basic reproduction number  is obtained. If , then the measles will spread and persist in the population. If , then the disease will die out.  The disease was locally asymptotically stable if  and unstable if  . ALSO, WE PROVED THE GLOBAL STABILITY FOR THE DISEASE-FREE EQUILIBRIUM USING LASSALLE'S INVARIANCE PRINCIPLE OF Lyaponuv function. Furthermore, the endemic equilibrium was locally asymptotically stable if , under certain conditions. Numerical simulations were conducted to confirm our analytic results. Our findings were that, increasing the birth rate of humans, decreasing the progression rate, increasing the recovery rate and reducing the infectious rate can be useful in controlling and combating the measles.


2021 ◽  
Vol 9 (1) ◽  
pp. 198-212
Author(s):  
Cheryl Q. Mentuda

Abstract Dengue is the most common mosquito-borne viral infection transmitted disease. It is due to the four types of viruses (DENV-1, DENV-2, DENV-3, DENV-4), which transmit through the bite of infected Aedes aegypti and Aedes albopictus female mosquitoes during the daytime. The first globally commercialized vaccine is Dengvaxia, also known as the CYD-TDV vaccine, manufactured by Sanofi Pasteur. This paper presents a Ross-type epidemic model to describe the vaccine interaction between humans and mosquitoes using an entomological mosquito growth population and constant human population. After establishing the basic reproduction number ℛ0, we present three control strategies: vaccination, vector control, and the combination of vaccination and vector control. We use Pontryagin’s minimum principle to characterize optimal control and apply numerical simulations to determine which strategies best suit each compartment. Results show that vector control requires shorter time applications in minimizing mosquito populations. Whereas vaccinating the primary susceptible human population requires a shorter time compared to the secondary susceptible human.


2019 ◽  
Vol 27 (04) ◽  
pp. 503-530
Author(s):  
RUI XU ◽  
NING BAI ◽  
XIAOHONG TIAN

In this paper, mathematical analysis is carried out for a mathematical model of Tuberculosis (TB) with age-dependent latency and active infection. The model divides latent TB infection into two stages: an early stage of high risk of developing active TB and a late stage of lower risk for developing active TB. Infected persons initially progress through the early latent TB stage and then can either progress to active TB infection or progress to late latent TB infection. The model is formulated by incorporating the duration that an individual has spent in the stages of the early latent TB, the late latent TB and the active TB infection as variables. By constructing suitable Lyapunov functionals and using LaSalle’s invariance principle, it is shown that the global dynamics of the disease is completely determined by the basic reproduction number: if the basic reproduction number is less than unity, the TB always dies out; if the basic reproduction number is greater than unity, a unique endemic steady state exists and is globally asymptotically stable in the interior of the feasible region and therefore the TB becomes endemic. Numerical simulations are carried out to illustrate the theoretical results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yu Ji ◽  
Muxuan Zheng

The basic viral infection models, proposed by Nowak et al. and Perelson et al., respectively, have been widely used to describe viral infection such as HBV and HIV infection. However, the basic reproduction numbers of the two models are proportional to the number of total cells of the host's organ prior to the infection, which seems not to be reasonable. In this paper, we formulate an amended model with a general standard incidence rate. The basic reproduction number of the amended model is independent of total cells of the host’s organ. When the basic reproduction numberR0<1, the infection-free equilibrium is globally asymptotically stable and the virus is cleared. Moreover, ifR0>1, then the endemic equilibrium is globally asymptotically stable and the virus persists in the host.


2010 ◽  
Vol 18 (02) ◽  
pp. 325-337 ◽  
Author(s):  
YU JI ◽  
LEQUAN MIN ◽  
YONGAN YE

The basic models of within-host viral infection, proposed by Nowak and May2 and Perelson and Nelson,5 have been widely used in the studies of HBV and HIV infections. The basic reproduction numbers of the two models are proportional to the number of total cells of the host's organ prior to the infection. In this paper, we formulate an amended Perelson and Nelson's model with standard incidence. The basic reproduction number of the amended model is independent of total cells of the host's organ. If the basic reproduction number R0 < 1, then the infection-free equilibrium is globally asymptotically stable and the virus is cleared; if R0 > 1, then the virus persists in the host, and solutions approach either an endemic equilibrium or a periodic orbit. Numerical simulations of this model agree well with the clinical HBV infection data. This can provide a possible interpretation for the viral oscillation behaviors, which were observed in chronic HBV infection patients.


2018 ◽  
Vol 3 (1) ◽  
pp. 29
Author(s):  
Asmaidi Asmaidi ◽  
Eka Dodi Suryanto

SEIIT stands for Susceptible (S), Exposed (E), Infected population untreated (I) and Infected population treated (IT). Infected groups consisted in two categories, untreated (I) and with treatment (IT) by presented to insulin. Susceptible shifted to exposed by gene. Prefered outcomes are mathematical models for diabetes mellitus type SEIIT, conventional type, determining breakpoint and basic reproduction number, breakpoint analysis, breakpoint stability simulation. The results were mathematical models or diabetes mellitus compartment charts/diagrams. These diagram were both analysed analitically and numerically. The analyses presented two fixed points, with desease and without desease. Each point was analysed by its basic reproduction number, analitically and numerically, at fixed points without desease Ro < 1, while the other Ro > 1. Human population at condition Ro < 1 tent to move from susceptibel from the initial standpoint and becomes stabilized at . Proportion of exposed (e) is diminishing from the starting point and stabilized at e = 0. Infected untreated dimished from the initial stage and stabilized at i = 0 . Infected with treatment (iT) was increased from initial point, diminished and stabilized at iT = 0. Human behavior when R0 > 1, susceptible (s) increased at the beginning then fluctuated, stabilized finally at . Exposed (e) lower at first then stabilized at . Untreated infected group (i) lower from initial then stabilized when .00393. Treatment group initiate an increasing value, then fluctuated and stabilized at .


2021 ◽  
Vol 2 (2) ◽  
pp. 68-79
Author(s):  
Muhammad Manaqib ◽  
Irma Fauziah ◽  
Eti Hartati

This study developed a model for the spread of COVID-19 disease using the SIR model which was added by a health mask and quarantine for infected individuals. The population is divided into six subpopulations, namely the subpopulation susceptible without a health mask, susceptible using a health mask, infected without using a health mask, infected using a health mask, quarantine for infected individuals, and the subpopulation to recover. The results obtained two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point, and the basic reproduction number (R0). The existence of a disease-free equilibrium point is unconditional, whereas an endemic equilibrium point exists if the basic reproduction number is more than one. Stability analysis of the local asymptotically stable disease-free equilibrium point when the basic reproduction number is less than one. Furthermore, numerical simulations are carried out to provide a geometric picture related to the results that have been analyzed. The results of numerical simulations support the results of the analysis obtained. Finally, the sensitivity analysis of the basic reproduction numbers carried out obtained four parameters that dominantly affect the basic reproduction number, namely the rate of contact of susceptible individuals with infection, the rate of health mask use, the rate of health mask release, and the rate of quarantine for infected individuals.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2 epidemic.


Sign in / Sign up

Export Citation Format

Share Document