scholarly journals Preparation and Quality Evaluation of Buckwheat Incorporated Bread

2021 ◽  
Vol 04 (5) ◽  
pp. 01-10
Author(s):  
Arjun Ghimire

This study aimed to optimize buckwheat flour in bread. The product formulation was based on the results obtained from the DOE (Design of Expert) v 7.1.5. Buckwheat flour incorporated bread was prepared with the incorporation of buckwheat flour in 10%, 17.5%, 20%, 25%, 30%, 32.5%, and 40% concentration with wheat flour. The physical properties of buckwheat were analyzed along with the different physical properties of the prepared product. The proximate along with iron content and sensory analysis of buckwheat incorporated bread of different concentrations was carried out and the means were compared at a 5% level of significance. The physical properties of buckwheat revealed the l/b ratio of 1.51, bulk density of 70.23 Kg/HL, and 1000 Kernel weight of 22.12g, respectively. Physical analysis of the bread formulations showed that the loaf volume and specific loaf volume decreased while the weight increased with the incorporation of buckwheat flour. The lowest loaf volume of 204 cm3 and specific loaf volume of 1.86cm3/g was recorded for 40% buckwheat incorporated bread with an increased weight of 109.40g. The protein, fat, crude fiber, ash, and iron were found to be 12.55%, 4.89%, 1.56%, 2.43%, and 3.27 mg/100 g respectively, in 25% buckwheat flour incorporated bread. The formulation of 25% buckwheat flour was found to be best in sensory characteristics in terms of color, taste, flavor, crumb appearance, and overall acceptability. Hence, the results concluded that 25% buckwheat incorporated flour bread was the optimum bread formulation for the preparation of composite bread.

Author(s):  
Wasiu Awoyale ◽  
Adebayo B. Abass ◽  
Paul Amaza ◽  
Olayemi Oluwasoga ◽  
Gregory Nwaoliwe

With proper processing and utilization, biofortified cassava may contribute to the nutritional status of the consumers, thus, the need for this study. High-quality cassava flour from white- (TME 419) and biofortified (TMS 01/1368) cassava varieties were produced at a commercial processing factory, after which the flour is composite with wheat flour to produce bread. The nutritional composition, physical properties and sensory quality of the composite bread were analyzed using standard methods. Results showed that composite bread from 20% biofortified cassava flour (20-YCF) had a higher value of total β-carotene (0.74 μg/g), moisture (37.83%) and ash (2.29%) contents. The fat (3.72%) and protein (12.83%) contents were higher in 20% white cassava flour (20-WCF) composite bread. The 20-YCF composite bread had the highest loaf volume (3286.2 cm3), elasticity (6.32), chewiness (40.51 N) and gumminess (6.41), 20-WCF composite bread had higher specific volume (3.59 cm3/g) and hardness (176.50 N). The 100% wheat bread had higher cohesiveness (0.10) and loaf weight (932.35 g). A significant negative correlation (r = - 0.98, p≤0.05) exist between bread hardness and protein content. The composite bread compared favourably with the 100% wheat bread in terms of weight and aroma, but, the 100% wheat bread was more acceptable.


2014 ◽  
Vol 28 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Rahman Akinoso ◽  
Ademola K. Aremu ◽  
Ismail S. Balogun

Abstract This work studied the effect of drying temperature and duration on some physical and mechanical properties of two varieties of kola nuts using a response surface methodology approach. Physical properties determined were length, breadth, thickness, sphericity, aspect ratio, colour and moisture loss, while mechanical properties were force at break, yield, and peak, deformation at break and peak, energy to peak, energy to break, and yield, and Young modulus. At 5% level of significance, only mass, moisture loss, and sphericity were the physical properties affected. However, all measured mechanical properties were affected by drying temperature and duration (p<0.05).


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Arubi P. Alobo ◽  
Gibson L. Arueya

Wheat and cassava composite breads are generally associated with volume and textural defects in contrast with the traditional wheat based variants. Efforts to mitigate this challenge through use of synthetic additives have been unsuccessful owing to safety concerns. The objective of this study was to explore Grewia venusta mucilage as a potential natural additive in wheat-cassava composite bread production. Sweet cassava flour was used to replace wheat flour at 100: 0 (control), 90:10, 80:20 and 70:30% ratios in bread making. Aqueous extract of G. venusta stem bark was oven dried (50±3 oC), milled and added at 0, 1.0 and 2.0% (w/w) to the flour mixtures. These, along with other conventional inputs were mixed, and used to produce bread. Proximate compositions, physical and sensory properties of the bread loaves were evaluated. Cassava flour inclusion resulted in significant (P≤0.05) decrease in the protein content of the control from 18.1% to 12.1% (90:10%), 11.5% (80:20%) and 9.9% (70:30%). Addition of mucilage marginally increased the protein and dietary fibre contents of the loaves. Loaves containing 1-2% mucilage were more regular in shape with smoother crust than those without mucilage. Cassava flour addition at 10%, 20% and 30% decreased loaf height from 6.0 cm to 5.8 cm, 5.7 cm and 5.5 cm, as well as loaf volume from 815.5 cm3 to 783.1 cm3, 776.8 cm3 and 744.5 cm3, respectively. Mucilage inclusion resulted in increased heights and volumes of the loaves and reduced weights of loaf fragments upon slicing. The mucilage significantly improved the texture of the bread loaves. 


Author(s):  
Delia Mihaela TRUTA ◽  
Maria TOFANA ◽  
Sonia Ancuţa SOCACI ◽  
Rowena CHELEMAN

The aim of this work is to analyze the chemical and physical properties of balsamic vinegar, in order to improve the chemical information about this product, useful for its authentication and quality evaluation. Using three balsamic vinegars purchased in local markets as samples, this study investigated the labeling and the physicochemical properties of commercial concentrated balsamic vinegar in order to understand their production method and quality. Two of the samples were balsamic vinegars from Modena (BVM) and the third was a balsamic vinegar from Kalamata (BVK). According to the labels, all the balsamic vinegars samples were made of grape must and had an acidity of 6%. The appearance of the samples of vinegar differed significantly, but the acidity from the label was the same for all. Since people are paying much more attention to health, the number of concentrated vinegar products is expected to increase in the future. Thus, appropriate rules and physicochemical properties are required to regulate vinegar production and quality.


2020 ◽  
Vol 19 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Nur Ashikin Abdul-Hamid ◽  
Nur Hafizah Mustaffer ◽  
M. Maulidiani ◽  
Ahmed Mediani ◽  
Intan Safinar Ismail ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Noha M. Almoraie

The study was carried out to demonstrate the effect of walnut flour enhancement on the physical, nutritional, and sensory quality of bread. Walnut flour was prepared by soaking, deshelling, oven drying, and sieving whole walnuts. The wheat flour was supplemented with walnut flour by 0, 20, 30, 40, and 50% of the total amount. Standard procedures were taken to estimate the proximate composition of wheat and walnut flour and bread samples. A comparison between the control and supplemented bread was made, where the physical characteristics (weight, volume, and specific volume) and sensory quality were checked. The enhanced bread, where the percentage was between 20 and 50%, appeared to have a significant increase in protein, fat, linoleic acid, and α-linolenic acid and a decrease in carbohydrate and fibre values. Increased walnut flour replacement showed that physical properties, loaf volume and specific loaf volume, have declined. The sensory attributes between the unsupplemented and supplemented bread showed major differences. As an outcome, substituting 30% walnut flour gave the best overall quality of bread acceptability.


2016 ◽  
Vol 30 (3) ◽  
pp. 301-309 ◽  
Author(s):  
Yalçın Coşkuner ◽  
Ayşe Gökbudak

Abstract In this study some physical properties of fan palm (Washingtonia robusta) fruits, seeds and seed coats were determined using dimensional, bulk and single kernel physical analysis. The moisture content of whole fruits, seeds and seed coats was 12.0, 9.86 and 13.87% (d.b.), respectively. The sphericity values showed that seed shape (0.86) is close to a sphere, similar as the fruit shape (0.83), both of which were close to a scalene ellipsoid shape. The surface area values of fruits and seeds were obtained as 163.27 and 80.25 mm2, and volume values were obtained as 190.96 and 66.32 mm3, respectively. Bulk densities of fruits, seeds and seed coats were 559, 783 and 272 kg m−3, and the corresponding true densities were 1143, 1147 and 864 kg m−3, whereas the corresponding porosities were 48.87, 54.12, and 31.52%, respectively. The values of the static coefficient of friction and the angle of repose of fruits, seeds and seed coats of palm fruits were studied on aluminium, canvas, galvanised iron, plywood, PP knitted bag, PVC and stainless steel surfaces. As expected, seed coat has higher values of coefficient of static friction on the all surfaces than fruit and seed.


1972 ◽  
Vol 52 (2) ◽  
pp. 139-146 ◽  
Author(s):  
R. A. ORTH ◽  
R. J. BAKER ◽  
W. BUSHUK

Simple correlations between a number of quality parameters, their heritabilities and an evaluation of the best combination of these parameters to predict loaf volume, were determined from data for 26 cultivars of spring wheat grown at four locations in Western Canada. Highly significant correlations between remix loaf volume and each of Zeleny sedimentation value, farinograph dough development time, farinograph mixing tolerance index, proportion of residue protein, and glutenin protein were obtained. Sedimentation value, 1000 kernel weight, mixing tolerance index, flour yield, farinograph absorption, and remix loaf volume all had high heritabilities over the four locations. Using the simple correlations as a guide, regression formulae yielding the best predictions of remix loaf volume were developed. Residue protein content, Zeleny sedimentation value, and farinograph dough development time provided the most useful information for predicting baking quality by a single test.


Sign in / Sign up

Export Citation Format

Share Document