scholarly journals A study on the effect of blade inlet angle, attack angle and the diameter ratio on the efficiency of a Banki Mitchell turbine

2021 ◽  
Vol 8 (3) ◽  
pp. 122-131
Author(s):  
Hırwa Jean Paul NIYIGENA
2013 ◽  
Vol 291-294 ◽  
pp. 335-339
Author(s):  
De Yu Tu ◽  
Xu Wang ◽  
Ai Hua Xu ◽  
Xin Chen ◽  
Yun Hu

Biomass briquetting technology is one of the key technologies in the utilization of biomass energy. In this paper, the mechanical characteristics of the die holes were analyzed to set up mathematical model in the briquettes forming process. The effects of the three key structure parameters, which include the inlet angle, forming taper angle and length-diameter ratio, were carried out by using the finite element software. The results indicated that the die hole with forming taper is easy to form back pressure, and the higher taper angle, the greater equivalent stress value is found in the corresponding parts, which is helpful for forming process. Combined with processing cost, energy consumption and wear analysis, the die hole forming taper should not be too big. For the corn straw, it can satisfy the molding pressure requirements to take 2° forming taper. The parameter of inlet angle main influences material grabbing, production efficiency and flat die manufacturing cost. For the corn straw, the inlet angle between 40° and 50° of die hole is not only beneficial to material grabbing and forming, but also can control flat die manufacturing cost and guarantee a certain production efficiency. Length to diameter ratio main influences the stress distribution in shape-preserving section and reflects the compressed extent of the material. Combined with energy consumption analysis, length to diameter ratio between 4:1 and 5:1 can guarantee the corn straw forming requirements. The above numerical simulation method and results can provide some reference for the flat die structure design and parameter optimization.


The Eye ◽  
2020 ◽  
Vol 22 (129) ◽  
pp. 22-29
Author(s):  
Svetlana Kravchuk ◽  
Olga Zhabina

We described two clinical cases of ortho-k lenses fitting in patients with “non-typical” corneal curvature/diameter ratio. The main goal was to acknowledge effective and safe use of this myopia correction method in patients with corneal diameter greater than 11 mm. Individual approach to each patient is the key to a successful and safe ortho-k lenses fitting.


Informatica ◽  
2018 ◽  
Vol 29 (4) ◽  
pp. 757-771 ◽  
Author(s):  
Giedrius Stabingis ◽  
Jolita Bernatavičienė ◽  
Gintautas Dzemyda ◽  
Alvydas Paunksnis ◽  
Lijana Stabingienė ◽  
...  
Keyword(s):  

2021 ◽  
pp. 107754632110144
Author(s):  
Yiqing Yang ◽  
Haoyang Gao ◽  
Qiang Liu

Turning cutting tool with large length–diameter ratio has been essential when machining structural part with deep cavity and in-depth hole features. However, chatter vibration is apt to occur with the increase of tool overhang. A slender turning cutting tool with a length–diameter ratio of 7 is developed by using a vibration absorber equipped with piezoelectric ceramic. The vibration absorber has dual functions of vibration transfer to the absorber mass and vibration conversion to the electrical energy via the piezoelectric effect. Equations of motion are established considering the dual damping from the piezoelectric ceramic and rubber gasket. The equivalent damping of piezoelectric ceramic is derived, and the geometries are optimized to achieve optimal vibration suppression. The modal analysis demonstrates that the cutting tool with the vibration absorber can reach 80.1% magnitude reduction. Machining tests are carried out in the end. The machining acceleration and machined surface roughness validate the vibration suppression of the VA, and the output voltage by the piezoelectric ceramic demonstrates the ability of vibration sensing.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


Sign in / Sign up

Export Citation Format

Share Document