Investigating the effect of squeegee attack angle on the solder paste pressure during stencil printing

Author(s):  
Oliver Krammer
1999 ◽  
Author(s):  
Jianbiao Pan ◽  
Gregory L. Tonkay

Abstract Stencil printing has been the dominant method of solder deposition in surface mount assembly. With the development of advanced packaging technologies such as ball grid array (BGA) and flip chip on board (FCOB), stencil printing will continue to play an important role. However, the stencil printing process is not completely understood because 52–71 percent of fine and ultra-fine pitch surface mount assembly defects are printing process related (Clouthier, 1999). This paper proposes an analytical model of the solder paste deposition process during stencil printing. The model derives the relationship between the transfer ratio and the area ratio. The area ratio is recommended as a main indicator for determining the maximum stencil thickness. This model explains two experimental phenomena. One is that increasing stencil thickness does not necessarily lead to thicker deposits. The other is that perpendicular apertures print thicker than parallel apertures.


2018 ◽  
Vol 30 (3) ◽  
pp. 164-170 ◽  
Author(s):  
Péter Martinek ◽  
Oliver Krammer

Purpose This paper aims to present a robust prediction method for estimating the quality of electronic products assembled with pin-in-paste soldering technology. A specific board quality factor was also defined which describes the expected yield of the board assembly. Design/methodology/approach Experiments were performed to obtain the required input data for developing a prediction method based on decision tree learning techniques. A Type 4 lead-free solder paste (particle size 20–38 µm) was deposited by stencil printing with different printing speeds (from 20 mm/s to 70 mm/s) into the through-holes (0.8 mm, 1 mm, 1.1 mm, 1.4 mm) of an FR4 board. Hole-filling was investigated with X-ray analyses. Three test cases were evaluated. Findings The optimal parameters of the algorithm were determined as: subsample is 0.5, learning rate is 0.001, maximum tree depth is 6 and boosting iteration is 10,000. The mean absolute error, root mean square error and mean absolute percentage error resulted in 0.024, 0.03 and 3.5, respectively, on average for the prediction of the hole-filling value, based on the printing speed and hole-diameter after optimisation. Our method is able to predict the hole-filling in pin-in-paste technology for different through-hole diameters. Originality/value No research works are available in current literature regarding machine learning techniques for pin-in-paste technology. Therefore, we decided to develop a method using decision tree learning techniques for supporting the design of the stencil printing process for through-hole components and pin-in-paste technology. The first pass yield of the assembly can be enhanced, and the reflow soldering failures of pin-in-paste technology can be significantly reduced.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000671-000707
Author(s):  
Stephen Kenny ◽  
Sven Lamprecht ◽  
Kai Matejat ◽  
Bernd Roelfs

Electrolytic Solder Deposit for Current methods for the formation of pre-solder bumps for flip chip attachment use stencil printing techniques with an appropriate solder paste. The continuing trend towards increasing miniaturisation and the associated decrease in size of solder resist opening, SRO is causing production difficulties with the stencil printing process. Practical experience of production yields has shown that stencil printing will not be able to meet future requirements for solder bump pitch production below 0.15 mm for these applications. This paper describes a novel approach to replace the stencil printing process by use of an electrolytic deposition of solder. In contrast to stencil printing, use of electrolytic deposition techniques allows production of solder bumps with a pitch below 0.15 mm and with a SRO below 80 μm. Methods for production of electrolytic solder bumps based on pure tin as well as alloys of tin/copper and also tin/silver are shown and in particular a method to control the alloy concentration of electroplated tin/copper bumps. Test results with both alloy systems and also pure tin bumping are presented together with comparison of the advantages and disadvantages. The general advantages of replacement of stencil printing by electrolytic deposition of solder bumps are shown and in particular the improvement of bump reliability and the potential to significantly decrease costs by yield improvement.


1993 ◽  
Vol 323 ◽  
Author(s):  
Linda M. Head ◽  
Vincent Rogers ◽  
Chitteranjan Sahay ◽  
James Constable

AbstractTo create a model for the release process of solder paste during stencil printing for surface mount applications it is necessary to determine the shear stress developed at the interface between the solder paste and stencil sidewall. An experiment has been developed to determine the value of the shear stress for solder paste samples. For the purpose of this experiment a Micro-mechanical tester has been adapted and programmed to provide both a shear thinning cycle and a pull-off cycle that simulate aperture fill and stencil lift-off. The shear stress developed at the solder/stencil-sidewall interface is estimated from the data obtained during the pull-off portion of the Micro-mechanical test procedure. The micro-mechanical tester is fitted with a set of parallel plates that can be adjusted for plate separation and surface roughness.The experiment consists of two parts: (1) the shear thinning cycle and (2) the horizontal pull-off. After application of the solder paste and adjustment of plate separation, a back and forth movement of the upper plate provides shear thinning of the paste. This step is necessary to simulate the shear thinning that occurs from the application of squeege pressure during aperture fill. The horizontal pull-off then simulates the lift-off step of the stencil printing procedure. During the horizontal pull-off data is. taken which allows calculation of the force developed as the upper plate is pulled away from the lower. Results from this experiment show the values of shear stress that develop during pull-off with a variation of surface treatments and plate separations.This paper will present the experimental set-up, a description of the relationship between this experiment and the actual stencil lift-off process, and shear stress data that has been acquired for a variety of solder pastes and plate separations.


2013 ◽  
Vol 25 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Yong‐Won Lee ◽  
Keun‐Soo Kim ◽  
Katsuaki Suganuma

PurposeThe purpose of this paper is to study the effect of the electropolishing time of stencil manufacturing parameters and solder‐mask definition methods of PCB pad design parameters on the performance of solder paste stencil printing process for the assembly of 01005 chip components.Design/methodology/approachDuring the study, two types of stencils were manufactured for the evaluations: electroformed stencils and electropolished laser‐cut stencils. The electroformed stencils were manufactured using the standard electroforming process and their use in the paste printing process was compared against the use of an electropolished laser‐cut stencil. The electropolishing performance of the laser‐cut stencil was evaluated twice at the following intervals: 100 s and 200 s. The performance of the laser‐cut stencil was also evaluated without electropolishing. An optimized process was established after the polished stencil apertures of the laser‐cut stencil were inspected. The performance evaluations were made by visually inspecting the quality of the post‐surface finishing for the aperture wall and the quality of that post‐surface finishing was further checked using a scanning electron microscope. A test board was used in a series of designed experiments to evaluate the solder paste printing process.FindingsThe results demonstrated that the length of the electropolishing time had a significant effect on the small stencil's aperture quality and the solder paste's stencil printing performance. In this study, the most effective electropolishing time was 100 s for a stencil thickness of 0.08 mm. The deposited solder paste thickness was significantly better for the enhanced laser‐cut stencil with electropolishing compared to the conventional electroformed stencils. In this printing‐focused work, print paste thickness measurements were also found to vary across different solder‐mask definition methods of printed circuit board pad designs with no change in the size of the stencil aperture. The highest paste value transfer consistently occurred with solder‐mask‐defined pads, when an electropolished laser‐cut stencil was used.Originality/valueDue to important improvements in the quality of the electropolished laser‐cut stencil, and based on the results of this experiment, the electropolished laser‐cut stencil is strongly recommended for the solder paste printing of fine‐pitch and miniature components, especially in comparison to the typical laser‐cut stencil. The advantages of implementing a 01005 chip component mass production assembly process include excellent solder paste release, increased solder volume, good manufacture‐ability, fast turnaround time, and greater cost saving opportunities.


Author(s):  
Bryan Christian S. Bacquian ◽  
Frederick Ray I. Gomez ◽  
Edwin M. Graycochea Jr.

One of the challenging assembly processes in semiconductor manufacturing industry is stencil printing using solder paste as direct material. With this technology, some issues were encountered during the development phase of an advanced leadframe device and one of which is the solder ball misplace or off-centered ball. This paper, hence, focused on addressing the ball misplace issue at stencil printing process. Comprehensive parameter optimization particularly on the print speed and print force was employed to eliminate or significantly reduce the ball misplace defect at stencil printing process. With this process optimization and improvement, a reduction of around 96 percent ball misplace occurrence was achieved.


2019 ◽  
Vol 102 (9-12) ◽  
pp. 3369-3379 ◽  
Author(s):  
M. S. Rusdi ◽  
M. Z. Abdullah ◽  
S. Chellvarajoo ◽  
M. S. Abdul Aziz ◽  
M. K. Abdullah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document