scholarly journals Safety Risk Management in Dam Construction Projects: Literature Review

2021 ◽  
Vol 2 (1) ◽  
pp. 63-74
Author(s):  
Dinal Aulia ◽  
Lusi Marifah ◽  
Ikbal Yurrazak ◽  
Humiras Hardi Purba

Safety risk assessment in dams is a traditional and modern approach to the engineering process of dams on safety systems so as to produce a design history that has a good overall record and integrity. With this approach for both old and new dams, this safety risk assessment aims to determine whether the risk the hazard can be tolerated or not, if it cannot be tolerated then there must be a solution for action to reduce the risk of danger so that the safety of the dam can be obtained. The existing risk assessment can be used as the basis for the construction of the dam to its maintenance, in this study discussed risk assessment safety on dams located in several countries such as in Asia, Europe and America. The methods implemented include the preparation of safety risks, risk analysis, risk evaluation and safety risk management. Based on research results The main risk factor that causes safety responsibilities is the Contractor's responsibility, namely the Non-technical project factor (40.54%), the 2nd rank is the Undecided Responsibility due to internal technical factors (35.13%), the 3rd rank is the technical project factor namely Contractor's Responsibility (10.8%), Rank 4 is external technical factor and external non-technical factor, the last risk factor is internal non-technical factor (2.7%) namely Joint Responsibility. Keywords : Risk safety management, risk assessment, risk analysis, risk evaluation, dam project

2021 ◽  
Vol 14 (01) ◽  
pp. 77-86
Author(s):  
Bhima Shakti Arrafat

Every practical activity carried out by student at Aircraft Engineering Departement, then these activities have risks that need mitigation measures. In safety risk management requires departement to conduct an assessment of the risks that can occur from an activity using hazard identification, risk assessment and mitigation. By identifying types of hazards, assessing risks, getting results in the form of risk matrix and risk level and identifying mitigation actions that can be taken and accepted. Furthermore, it produces hazard identification and risk assessment & mitigation (HIRAM) documents, and controls risks to acceptable and tolerable levels with mitigation measures. Safety risk management which is one of the standards in implementing safety management system in Aircraft Engineering Departement can be fulfilled.


1997 ◽  
Vol 60 (11) ◽  
pp. 1432-1438 ◽  
Author(s):  
STEVE C. HATHAWAY

The international food safety environment is currently in a unique period of reevaluation and change. In an emerging trading environment regulated more according to food safety requirements than nontariff trade protection barriers, food safety risk analysis is pivotal to future Codex activities and implementation of the World Trade Organisation (WTO) Sanitary and Phytosanitary (SPS) Agreement. Development of guidelines for food safety risk assessment requires determination of scope, internationally agreed definitions, general principles, guidelines tailored for each class of foodborne hazards, and linkages and interactions with risk management and risk communication. Food safety risk assessments need to be soundly based on science, should incorporate the four analytical steps of the risk assessment paradigm, and should be documented in a transparent and readily understandable form. The particular needs of Codex, the WTO, national governments, industry, and consumers need to be taken into account, and this includes identification of the essential linkages between risk assessment and the design of HACCP plans. With respect to chemical hazards in food, a risk assessment approach provides the opportunity to broaden the understanding of acceptable daily intakes, maximum residue levels, and their public health significance. Guidelines for chemicals in foods will inevitably have to address the differences between safety evaluation and a genuine risk assessment approach. With respect to microbiological hazards, the unique problems associated with risk assessment of living organisms in food make it likely that application of guidelines in the medium term will more commonly use qualitative approaches. In the absence of a history of safety evaluation according to a notionally zero risk baseline, as is the case with chemicals, the objective of microbiological risk analysis to reduce microbial risks to “the minimum which is technologically feasible and practical” represents a genuine focus for risk assessment. As risk assessment is increasing applied and internationally accepted guidelines become established, decision criteria for risk management arguably present the greatest challenge in establishing and maintaining quantitative SPS measures for food in international trade and judging their equivalence. However, the desire of all interested parties for scientifically justified food safety measures may be tempered according to the ability of the global scientific community to generate the necessary data and the political will to accept food safety programmes in different countries that have equivalent outputs.


2021 ◽  
Vol 13 (4) ◽  
pp. 2034
Author(s):  
Chien-Liang Lin ◽  
Bey-Kun Chen

Risks inevitably exist in all stages of a project. In a construction project, which is highly dynamic and complex, risk factors affect the expected achievement rates of the three main performance goals, namely schedule, cost, and quality. A comprehensive risk management procedure requires three crucial steps: risk confirmation, analysis, and treatment. Risk analysis is the core of risk management. Through structural equation modeling, this study developed a risk analysis model that takes a different perspective and considered the occurrence probability of risk events and the extent to which these events affect a project. The contractor dimension was discovered to exert the strongest influence on an overall project, followed by the subcontractor and design dimensions. This paper proposes a novel construction project risk analysis model, which considers the entire project. The proposed model can be used as a reference for risk managers to make decisions about project risks, so as to achieve the ultimate goal of saving resources and the sustainable operation of the construction project.


Author(s):  
Boris Claros ◽  
Carlos Sun ◽  
Praveen Edara

At the airfield in hub airports, many activities occur that involve a range of participants, including various-size aircraft, ground vehicles, and workers. The safety management system is FAA's approach for systematically managing aviation safety. A major component of the safety management system is safety risk management (SRM), which entails analysis, assessment, and control of safety risks, including risks on the airfield. Current SRM has few specific safety models to estimate the likelihood or frequency of risks. This paper presents an example for development and incorporation of safety models into SRM. Specifically, it discusses safety models for runway incursion that use the following variables: total and general aviation operations, length of runway by type, number of taxiway intersections, snowfall, precipitation, number of hot spots, and construction activity. Categorization and processing of data were significant because each variable used could take on multiple forms, and some types of data involved review of airfield diagrams. The data used were from 137 U.S. hub airports for 2009 through 2014. For modeling, the negative multinomial distribution was used because it proved suitable for representing overdispersed data such as runway incursion frequency. Performance of the models was assessed through the goodness-of-fit measures of log likelihood, overdispersion, and cumulative residual plots. Models were developed for five severity categories of runway incursions and three types of surface events. The safety modeling approach presented here can serve as a foundation for development of other safety models that can be integrated into SRM to enable quantitative analysis of safety risks.


2011 ◽  
pp. 234-248
Author(s):  
Enid Mumford

Participative systems design has, in the past, been seen as a positive group process of thinking through needs and problems and arriving at solutions for making the situation better. This improved situation then continues until new technology or new solutions provide an opportunity for making the situation better still. So far this book has concentrated on how to make the best use of the positive factors assisting change, especially change that involves the introduction and use of technology. It has described the importance of getting a clear understanding of the change problem and its complexity, of developing effective strategies to address this complexity, and of the creation of structures, often organizational, to facilitate the subsequent use of the new system. This last requires always keeping in mind the need to meet the dual objectives of achieving operating efficiency and a good quality of working life. This is often described as job satisfaction. Most of all there has been a continual stress on the importance of participation. This involves sharing the design tasks with those who will be affected by them and taking account of their opinions in design decisions. This chapter addresses the reverse of this positive objective. It considers the negative factors in a change situation which are likely to cause problems and to threaten the success of the change programme and of the new system. There are very many of these kinds of problems and it is only possible to discuss a few here. The ones I have selected are criminal threats which affect the future viability of the company, technical problems which reduce efficiency, unpleasant and stressful work that threatens employee health, and problems of morale which affect the individual’s happiness in the workplace. A consideration of negative factors brings us into the challenging areas of uncertainty and risk. Uncertainty is when we do not know what is going to happen and often contains an element of surprise. This is especially true today when so many decisions depend on forecasts of the future. A contributing factor here can be an overemphasis on the present as a means of forecasting the future. Uncertainty is also often a result of the behaviour of others rather than of events. This is hard to predict. Experts tell us that today we are living in a risk society (Beck, 1992). Complex design problems can have a high degree of uncertainty and easily become risks. They often have a subjective element, for what one person considers a problem or a risk, another will see as an opportunity. Complex problems also require information for their solution and this may be difficult to find. It requires the ability to search for, analyse and synthesise, relevant intelligence and relate it to past, current and future events. Threats to important institutions from terrorists are of a different nature and scale to those that have been experienced before. Many will take us completely by surprise. Bernstein (1996) suggests that the essence of risk management lies in maximising the areas which we have some control over while minimising those areas where we have no control over the outcome and the linkage between cause and effect is hidden. When we take a risk we are making a bet that a particular outcome will result from the decision we have made although we have no certainty that this will happen. Risk management usually starts with risk analysis, which attempts to establish and rank the most serious risks to be avoided so far as these are known. Here many companies attempt to achieve a balance between the benefits of greater security and the costs involved. Too high a level of security, while providing good protection, can result in a system that is both difficult to use and expensive to operate (Mumford, 1999). Risk analysis next moves on to risk assessment. This is an analysis of the seriousness of different risks by determining the probability and potential damage of each one. For example, major risks can come from a large concentration of data in one place that is accessed by many different people, not all of whom are known. There can be relationships between risks. Clifford Stoll’s (1990) book The Cuckoo’s Egg shows how the ability of a German hacker to enter a university laboratory computer made it possible for him to later enter into the computers of United States military bases. Risk analysis identifies the risks; risk assessment tries to estimate how likely they are to happen and how serious the consequences will be. Risk priorisation recognises that all companies cannot be protected from all risks and choices must be made. Risk impact is the likely magnitude of the loss if a system break-in, fraud or other serious problem occurs. Risk control involves further actions to reduce the risk and to trigger further defensive actions if a very serious problem occurs. Risk control also covers the monitoring of risk on a regular basis to check that existing protection is still effective. This can lead to risk reassessment. Very serious risks such as those coming from terrorist attack or criminal activity require monitoring. This, together with the detailed documentation of any problems or illegal activities when they occur, is essential to avoid complacency. An effective system must both prevent problems and detect when they have occurred. All of these activities to design security into a system require human vigilance if they are to be effective. All employees should accept some responsibility for checking that the system they work with continues to maintain its integrity and security. This chapter will place its main focus on protective problem solving and design directed at avoiding or minimising very serious risks. Today, it is unwise for managers to neglect this. Because of its growth in recent years and its prevalence today criminal activity will be examined first in some detail. Particular attention will be paid to how the involvement of employees in problem solving can play a part in reducing or avoiding this.


Author(s):  
Karolina Jagiello ◽  
Anita Sosnowska ◽  
Alicja Mikolajczyk ◽  
Tomasz Puzyn

This article gives a brief description of the existing regulations related to biomaterials safety that need to be considered before it is introduced into EU market. According to these regulations, the risk analysis should include two characteristics: probability of occurrence of harm, and severity. Identified user-related harm should be reduced by managing the risk. Additionally, the review presents an overview of engineered biomaterials (EBMs), which in combination with nanoscale components (NPs) have shown promises in Advanced Therapy Medicinal Products (ATMP) and Medical Devices (MD). In this article, recent challenges, objectives and perspectives in risk assessment and risk management of ATMP and MD composed of nanobiomaterials were also highlighted.


Sign in / Sign up

Export Citation Format

Share Document