scholarly journals SELEKSI KETAHANAN BEBERAPA KULTIVAR PADI (Oryza sativa L.) LOKAL ASAL KALIMANTAN TIMUR TERHADAP CEKAMAN ALUMINIUM PADA FASE PERKECAMBAHAN

2019 ◽  
Vol 44 (2) ◽  
pp. 178
Author(s):  
Nurul Aini ◽  
Susylowati Susylowati ◽  
Nurhasanah Nurhasanah

Food security and sovereignty can be realized through the expansion of agricultural land to the marginal lands. One type of marginal land is acidie soils with high levels of aluminum (Al) toxicity. An efficient and environmentally friendly approach to utilizeng acidie soils as agricultural land is by using rice varieties which have a high tolerance to aluminum stress on acidie soils. The purpose of this study was to determine the effect of aluminum stress on the growth of the local rice from East Kalimantan and to select the tolerant cultivars against aluminum stress at the germination stage. The study was conducted for three months (May-July 2018), at Laboratory of Biotechnology, Faculty of Agriculture, University of Mulawarman, Samarinda.  This study used a Split Plot Design with three replications. As the main plot was Aluminum stress concentration (A) consisting of 3 levels, namely 0, 250 and 500 ppm of AlCl3 and as subplots were 25 rice genotypes, consisting of 23 local rice cultivars from East Kalimantan (V) and two genotypes as tolerant (Mekongga) and sensitive (IR64) controls. Assessment of aluminum tolerance level was carried out by calculating plant sensitivity index values against aluminum stress based on the Relative Root Growth (RRG) and Relative Shoot Growth (SRG) parameters. Other plant growth parameter data, root and shoot fresh and dry weight, were analyzed using analysis of variance at the test level α = 0.05, and the post-hoch test using Honestly Significant Difference test (HSD). Aluminum stress caused disruption of the East Kalimantan local rice cultivars growth, especially root growth. Aluminum concentration at either 250 ppm or 500 ppm reduced relative root growth and further damage the root system of the rice plants causing roots stunted and thickened. Likewise with shoot growth parameter, there was a relative shoot growth decline due to the aluminum stress on the plants. Two local rice cultivars of East Kalimantan, Pulut Mayang and Pulut Linjuang, were consistently tolerant to aluminum stress either in 250 ppm or 500 ppm of AlCl3; while Kawit, Bentian, Mayas Putih and Ketan putih cultivars were only classified as tolerant at a concentration of 250 ppm aluminum. On the other hand, a control sensitive variety IR64 showed the susceptibility to 250 and 500 ppm aluminum stress.

1963 ◽  
Vol 43 (3) ◽  
pp. 307-312 ◽  
Author(s):  
T. Lawrence

Twelve clonal lines of Russian wild ryegrass and the polycross seed from them were used for this study. The lines were evaluated for seedling vigor in the greenhouse, field, and laboratory. Seedling vigor was assessed on the basis of emergence from three depths of seeding, speed of germination, and relative root growth in glass tubes.Seed size of the parental clones and emergence of their progenies from a [Formula: see text]-inch seeding depth showed positive correlations of +0.76 and +0.83 in the greenhouse and field, respectively. Emergence from shallow seedings and relative root growth in glass tubes did not vary sufficiently to provide measured differentiation in seedling vigor. Speed of germination showed some indication that it might be used to determine seedling vigor.Selecting large-seeded lines and subjecting them to deep seeding in either the greenhouse or field is suggested as a suitable method of incorporating seedling vigor into a breeding program.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Xue ◽  
Jin-qin Wang ◽  
Jin Huang ◽  
Feng-ying Li ◽  
Ming Wang

The response of duckweed (Lemna minor L.) roots to Cd and its chemical forms was investigated. The relative root growth rate and concentrations of Cd and its different chemical forms in the root, that is, ethanol-extractable (FE-Cd), HCl-extractable (FHCl-Cd), and residual fractions (Fr-Cd), were quantified. Weibull model was used to unravel the regression between the relative root elongation (RRL) with chemical forms of Cd. Parameters assessed catalase (CAT), peroxidases (POD), and superoxide dismutase (SOD), as well as malondialdehyde (MDA) and total antioxidant capacity (A-TOC). Our results show that both the relative root growth rate and relative frond number were affected by Cd concentrations. The chemical forms of Cd were influenced by Cd content in the medium. Relative root elongation (RRL) showed a significant correlation with chemical forms of Cd. Additionally, POD and SOD increased at lower Cd concentrations followed by a decrease at higher Cd concentrations (at more than 5 μM Cd). Moreover, MDA and A-TOC increased and CAT decreased with increasing Cd exposure. Furthermore, CAT showed a significant correlation with FHCl-Cd. Taken together, it can be concluded that the chemical forms of Cd are statistically significant predictors of Cd toxicity to duckweed and to the other similar aquatic plants.


2007 ◽  
Vol 47 (12) ◽  
pp. 1506 ◽  
Author(s):  
Kenneth B. Marcum ◽  
Nicholas P. Yensen ◽  
John E. Leake

Water quantity and quality issues are accelerating the search for alternative xeriphytic and halophytic turf species. Growth and physiological responses to salinity of eight Distichlis spicata (L.) Greene genotypes were observed to elucidate salinity tolerance mechanisms operating in the species. Accession 1043 was superior in salinity tolerance to other genotypes, as indicated by percentage canopy green leaf area, relative (to control) shoot growth, relative root growth, and rooting depth, when exposed to increasing salinity up to 1.0 mol/L NaCl. Salinity tolerance was associated with complete, though minimal, shoot osmotic adjustment, maintenance of low shoot saline ion levels, and high shoot K+/Na+ ratios, all of which were facilitated by high leaf salt gland ion excretion rates.


1995 ◽  
Vol 22 (4) ◽  
pp. 531 ◽  
Author(s):  
PR Ryan ◽  
E Delhaize ◽  
PJ Randall

Aluminium (Al) can stimulate the efflux of malate and other organic acids from root apices of wheat (Triticum aestivum L.) seedlings. This response has been implicated in a mechanism of Al tolerance since the amount of malate released from an Al-tolerant genotype was 5-10-fold greater than the amount released from a near-isogenic, but Al sensitive, genotype. In the present study, 36 wheat cultivars were screened for Al tolerance and for the amount of malate released from their root apices with a standard A1 treatment. Excised root apices (3.0 mm) were used to measure malate efflux, and the relative tolerance to Al was determined from root growth measurements in 3 and 10μM AlCl3 with 200 μM CaCl2, pH 4.3. There was a significant correlation between relative tolerance of the genotypes to Al and the amount of malate released from their root apices. Growth measurements were also used to investigate the amelioration of Al toxicity by exogenous malate. In the presence of 3 μM Al alone, relative root growth of an Al-sensitive genotype was reduced to 13% of the control. Addition of 10 μM malate to the solution increased relative root growth to 50%, and 20 �M malate completely alleviated the Al-induced inhibition of root growth. The results support the hypothesis that the Al-stimulated efflux of malate from root apices is involved in a general mechanism for Al tolerance in wheat.


1989 ◽  
Vol 67 (5) ◽  
pp. 1305-1308 ◽  
Author(s):  
Sheila M. Macfie ◽  
Gregory J. Taylor ◽  
Keith G. Briggs ◽  
John Hoddinott

Thirty cultivars of Triticum aestivum differed in tolerance of manganese (Mn) as determined by relative root growth in solution culture. Based upon a root weight index (RWI = root weight in the presence of 500 μM Mn divided by control root weight), Mn tolerance ranged from 0.08 to 0.88. All Canadian Western Red Spring (CWRS) cultivars tested were Mn sensitive. Cultivars bred for high yield were more Mn tolerant, especially 'Norquay' (RWI = 0.88) which was the only cultivar with a RWI > 0.70. The cultivars 'Norquay' and 'Columbus' were selected as standards for Mn tolerance and Mn sensitivity, respectively. 'Norquay' showed maximum root growth at 100 μM Mn, a concentration which was toxic to 'Columbus', and differential tolerance was maintained up to 1000 μM Mn in solution. Differences between 'Norquay' and 'Columbus', grown in excess Mn, were also observed in the accumulation of biomass with time. In contrast with previous studies, Mn tolerance was positively correlated with Al tolerance (R2 = 32.7, p = 0.001) in the cultivars tested.


2018 ◽  
Vol 20 (1) ◽  
pp. 273-282
Author(s):  
NURHASANAH NURHASANAH ◽  
HELMA SUCI LESTARI ◽  
WIDI SUNARYO

Nurhasanah, lestari HS, Sunaryo W. 2019. The response of East Kalimantan, Indonesia local rice cultivars against iron stress. Biodiversitas 20: 273-282. Iron (Fe) toxicity is one of the most problematic metal elements in acidic soil. Besides being as an essential micronutrient, an excessive iron can cause mineral and nutrients absorption disorder which leads to disruption of plant metabolism and cell development. Reduction of plant growth and yield will be the further consequences of the excessive soil iron content. This study aimed to evaluate the response of East Kalimantan local rice cultivars and to screen rice genotypes tolerant to iron stress. Twenty-five rice genotypes were used in this study, consisted of twenty-three local rice cultivars of East Kalimantan and two control of iron sensitive (IR64) and tolerant (Mekongga) varieties. Uniform sprouts (3 days old) having 1-1.5 cm root length were used for iron stress experiment. The seedlings were grown in nutrient solution using hydroponic system in an aerobic condition. The seedlings were treated for one week in iron stress condition by adding an extra iron source of 100 and 200 ppm FeSO4.7H2O (pH 4.0). The seedlings grown in the nutrient solution without an extra iron treatment at normal acidity growth condition (pH 5.8) were used as the control. The growth responses were observed from root, shoot, and biomass of the plants. The tolerance index of the plant growth characters was calculated to classify the rice genotypes into tolerant, moderate, and sensitive to iron stress. The results showed that 100 and 200 ppm of FeSO4.7H2O treatments inhibited the root and shoot growth and also reduced the plant biomass. The plant growth reduction was in parallel with the increase of iron concentration. There was a significant differential response of East Kalimantan local rice genotypes to iron stress treatment. Some genotypes showed an extreme reduction of plant growth, whereas several genotypes had an increased growth under stressed situation. In the contrary, the sensitive genotype IR 64 was consistently sensitive based on the tolerance index of the root, shoot, and plant biomass characters. Among all growth parameters, the most selective character for iron toxicity screening was maximal root length character. This character caused the most severe symptoms for most of the genotypes. Two local rice genotypes, Bentian and Bogor Hitam, were consistently tolerant based on the maximal root growth, total root growth, shoot length and plant biomass.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1192
Author(s):  
Thomas E. Marler ◽  
Ragan M. Callaway

Mixtures of species in natural or agricultural systems can increase the performance of individuals or groups relative to monocultures, often through facilitative mechanisms. Mechanisms include root communication by which plants can interrogate the identity of adjacent plants and respond negatively or positively. Alternatively, mixtures of species can ameliorate the harmful effects of soil biota that are pronounced in monocultures, thereby improving plant productivity. Limited investments into roots by shade-grown Serianthes plants in nurseries have been correlated with reduced survival after transplantation to forested habitats. We used companion container cultures in two studies to determine if heterospecific neighbor, or “stranger” roots could experimentally increase the root growth of Serianthes grandiflora plants used as surrogates for the critically endangered Serianthes nelsonii. In one study, native sympatric eudicot and pteridophyte companions increased relative root growth and conspecific companions decreased root growth in comparison to control plants that were grown with no companions. In a second study, the phylogeny of companion plants elicited different root growth responses following the order of congeneric < eudicot = monocot < gymnosperm < pteridophyte. We propose the use of stranger roots that are experimentally maintained in production containers as a passive protocol to improve relative and absolute root growth, leading to improved post-transplant growth and survival of container-grown Serianthes plants.


2016 ◽  
Vol 141 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Yawadee Srimake ◽  
Susan C. Miyasaka

Aluminum (Al) toxicity in acid soils is a major constraint to global agricultural production, affecting ≈30% of the world’s arable land area. To study Al tolerance in barrel medic (Medicago truncatula), we assessed responses to excess Al in 91 accessions collected from different geographic regions. Root elongations were used to characterize the sensitivity of each accession. Seedlings were grown in an agarose medium that contained three levels of Al (50, 100, and 200 µm), and root elongation was measured at 72 hours after exposure to Al. The ratio of root elongation in the presence and absence of Al [relative root growth (RRG)] differed among accessions. At 50 µm Al, we observed the greatest range of intraspecific variation. Aluminum sensitivity of 30 accessions was tested further by hematoxylin staining. Relative root growth was regressed linearly against the visual staining score, and a significant, negative, linear relationship was found between RRG at 50 or 100 µm Al and the intensity of staining scores. Twelve selected accessions differing in their resistance were grown in Al-toxic soil to confirm their Al response. Such information could be useful in breeding or selecting for improved Al tolerance in barrel medic, as well as other crop species.


1990 ◽  
Vol 41 (2) ◽  
pp. 253 ◽  
Author(s):  
WS Meyer ◽  
CS Tan ◽  
HD Barrs ◽  
RCG Smith

The dynamics of root development and water uptake in undisturbed and repacked clay soil were studied during increasing soil water deficit pre- and post-anthesis to find how root distribution, soil type and plant development affect plant available water (PAW). Volumetric water fraction was measured with a neutron probe, while root distribution was measured non-destructively using a series of horizontal perspex observation tubes. Soil modification affected the downward root growth which changed little over time for undisturbed (U) soil (6.7-13.6 mm/d) compared with the repacked (R) soil (7.5-42.9 mm). In the well-watered treatments root distribution was mostly above the 0.55 m depth in U soil, while there was a reasonably uniform vertical distribution in R soil. The rate of root growth during post-anthesis drying was 61% of that during pre-anthesis drying. The specific root water uptake rate (vol./unit root length/time) was linearly related to the relative root growth rate, indicating the importance of root growth in supplying water during soil drying. Estimated PAW values reflected effects of soil hydraulic properties, root distribution and a propensity to grow new roots during soil drying. Differences in grain yield between treatments were thought to result from the effects of different root distributions and the propensity to grow roots during soil drying.


2011 ◽  
Vol 35 (5) ◽  
pp. 558-566 ◽  
Author(s):  
Dong-Xiang GU ◽  
Liang TANG ◽  
Qi-Jun XU ◽  
Xiao-Jun LEI ◽  
Wei-Xing CAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document