scholarly journals Talking with Strangers: Improving Serianthes Transplant Quality with Interspecific Companions

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1192
Author(s):  
Thomas E. Marler ◽  
Ragan M. Callaway

Mixtures of species in natural or agricultural systems can increase the performance of individuals or groups relative to monocultures, often through facilitative mechanisms. Mechanisms include root communication by which plants can interrogate the identity of adjacent plants and respond negatively or positively. Alternatively, mixtures of species can ameliorate the harmful effects of soil biota that are pronounced in monocultures, thereby improving plant productivity. Limited investments into roots by shade-grown Serianthes plants in nurseries have been correlated with reduced survival after transplantation to forested habitats. We used companion container cultures in two studies to determine if heterospecific neighbor, or “stranger” roots could experimentally increase the root growth of Serianthes grandiflora plants used as surrogates for the critically endangered Serianthes nelsonii. In one study, native sympatric eudicot and pteridophyte companions increased relative root growth and conspecific companions decreased root growth in comparison to control plants that were grown with no companions. In a second study, the phylogeny of companion plants elicited different root growth responses following the order of congeneric < eudicot = monocot < gymnosperm < pteridophyte. We propose the use of stranger roots that are experimentally maintained in production containers as a passive protocol to improve relative and absolute root growth, leading to improved post-transplant growth and survival of container-grown Serianthes plants.

2019 ◽  
Vol 44 (2) ◽  
pp. 178
Author(s):  
Nurul Aini ◽  
Susylowati Susylowati ◽  
Nurhasanah Nurhasanah

Food security and sovereignty can be realized through the expansion of agricultural land to the marginal lands. One type of marginal land is acidie soils with high levels of aluminum (Al) toxicity. An efficient and environmentally friendly approach to utilizeng acidie soils as agricultural land is by using rice varieties which have a high tolerance to aluminum stress on acidie soils. The purpose of this study was to determine the effect of aluminum stress on the growth of the local rice from East Kalimantan and to select the tolerant cultivars against aluminum stress at the germination stage. The study was conducted for three months (May-July 2018), at Laboratory of Biotechnology, Faculty of Agriculture, University of Mulawarman, Samarinda.  This study used a Split Plot Design with three replications. As the main plot was Aluminum stress concentration (A) consisting of 3 levels, namely 0, 250 and 500 ppm of AlCl3 and as subplots were 25 rice genotypes, consisting of 23 local rice cultivars from East Kalimantan (V) and two genotypes as tolerant (Mekongga) and sensitive (IR64) controls. Assessment of aluminum tolerance level was carried out by calculating plant sensitivity index values against aluminum stress based on the Relative Root Growth (RRG) and Relative Shoot Growth (SRG) parameters. Other plant growth parameter data, root and shoot fresh and dry weight, were analyzed using analysis of variance at the test level α = 0.05, and the post-hoch test using Honestly Significant Difference test (HSD). Aluminum stress caused disruption of the East Kalimantan local rice cultivars growth, especially root growth. Aluminum concentration at either 250 ppm or 500 ppm reduced relative root growth and further damage the root system of the rice plants causing roots stunted and thickened. Likewise with shoot growth parameter, there was a relative shoot growth decline due to the aluminum stress on the plants. Two local rice cultivars of East Kalimantan, Pulut Mayang and Pulut Linjuang, were consistently tolerant to aluminum stress either in 250 ppm or 500 ppm of AlCl3; while Kawit, Bentian, Mayas Putih and Ketan putih cultivars were only classified as tolerant at a concentration of 250 ppm aluminum. On the other hand, a control sensitive variety IR64 showed the susceptibility to 250 and 500 ppm aluminum stress.


1963 ◽  
Vol 43 (3) ◽  
pp. 307-312 ◽  
Author(s):  
T. Lawrence

Twelve clonal lines of Russian wild ryegrass and the polycross seed from them were used for this study. The lines were evaluated for seedling vigor in the greenhouse, field, and laboratory. Seedling vigor was assessed on the basis of emergence from three depths of seeding, speed of germination, and relative root growth in glass tubes.Seed size of the parental clones and emergence of their progenies from a [Formula: see text]-inch seeding depth showed positive correlations of +0.76 and +0.83 in the greenhouse and field, respectively. Emergence from shallow seedings and relative root growth in glass tubes did not vary sufficiently to provide measured differentiation in seedling vigor. Speed of germination showed some indication that it might be used to determine seedling vigor.Selecting large-seeded lines and subjecting them to deep seeding in either the greenhouse or field is suggested as a suitable method of incorporating seedling vigor into a breeding program.


2000 ◽  
Vol 30 (11) ◽  
pp. 1778-1787 ◽  
Author(s):  
C F Scagel ◽  
R G Linderman ◽  
R K Scagel

Commercially available plant growth regulators (PGRs) or moisture retention gels, applied to the roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) before planting, can modify indole-3-acetic acid (IAA) levels in roots, root growth responses, and tree survival. We treated two different 1+0 stock types (PSB313B and PSB323) of Douglas-fir with indole-butyric acid (IBA), ethephon (Ethrel®), alginate, or a combination of IBA and alginate. New root growth and IAA levels in roots were measured 2 weeks after planting, and aboveground growth and tree survival were monitored over 10 growing seasons after planting. Treatment with IBA or the combination of IBA and alginate increased IAA conjugate and free IAA levels in roots, root growth, and tree survival. Alginate treatment alone increased new root growth and tree survival, but did not increase free IAA levels in roots. Ethrel® treatment increased free IAA levels and root growth, but had no effect on IAA conjugates or tree survival. A cost analysis suggests that use of certain PGRs or alginate decreases the cost required to attain target stocking and increased tree size. Our results suggest that application of PGRs or other root-promoting materials to the roots of Douglas-fir before planting has the potential to be a cost-beneficial method for increasing root growth and tree survival.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Xue ◽  
Jin-qin Wang ◽  
Jin Huang ◽  
Feng-ying Li ◽  
Ming Wang

The response of duckweed (Lemna minor L.) roots to Cd and its chemical forms was investigated. The relative root growth rate and concentrations of Cd and its different chemical forms in the root, that is, ethanol-extractable (FE-Cd), HCl-extractable (FHCl-Cd), and residual fractions (Fr-Cd), were quantified. Weibull model was used to unravel the regression between the relative root elongation (RRL) with chemical forms of Cd. Parameters assessed catalase (CAT), peroxidases (POD), and superoxide dismutase (SOD), as well as malondialdehyde (MDA) and total antioxidant capacity (A-TOC). Our results show that both the relative root growth rate and relative frond number were affected by Cd concentrations. The chemical forms of Cd were influenced by Cd content in the medium. Relative root elongation (RRL) showed a significant correlation with chemical forms of Cd. Additionally, POD and SOD increased at lower Cd concentrations followed by a decrease at higher Cd concentrations (at more than 5 μM Cd). Moreover, MDA and A-TOC increased and CAT decreased with increasing Cd exposure. Furthermore, CAT showed a significant correlation with FHCl-Cd. Taken together, it can be concluded that the chemical forms of Cd are statistically significant predictors of Cd toxicity to duckweed and to the other similar aquatic plants.


1995 ◽  
Vol 22 (4) ◽  
pp. 531 ◽  
Author(s):  
PR Ryan ◽  
E Delhaize ◽  
PJ Randall

Aluminium (Al) can stimulate the efflux of malate and other organic acids from root apices of wheat (Triticum aestivum L.) seedlings. This response has been implicated in a mechanism of Al tolerance since the amount of malate released from an Al-tolerant genotype was 5-10-fold greater than the amount released from a near-isogenic, but Al sensitive, genotype. In the present study, 36 wheat cultivars were screened for Al tolerance and for the amount of malate released from their root apices with a standard A1 treatment. Excised root apices (3.0 mm) were used to measure malate efflux, and the relative tolerance to Al was determined from root growth measurements in 3 and 10μM AlCl3 with 200 μM CaCl2, pH 4.3. There was a significant correlation between relative tolerance of the genotypes to Al and the amount of malate released from their root apices. Growth measurements were also used to investigate the amelioration of Al toxicity by exogenous malate. In the presence of 3 μM Al alone, relative root growth of an Al-sensitive genotype was reduced to 13% of the control. Addition of 10 μM malate to the solution increased relative root growth to 50%, and 20 �M malate completely alleviated the Al-induced inhibition of root growth. The results support the hypothesis that the Al-stimulated efflux of malate from root apices is involved in a general mechanism for Al tolerance in wheat.


1989 ◽  
Vol 67 (5) ◽  
pp. 1305-1308 ◽  
Author(s):  
Sheila M. Macfie ◽  
Gregory J. Taylor ◽  
Keith G. Briggs ◽  
John Hoddinott

Thirty cultivars of Triticum aestivum differed in tolerance of manganese (Mn) as determined by relative root growth in solution culture. Based upon a root weight index (RWI = root weight in the presence of 500 μM Mn divided by control root weight), Mn tolerance ranged from 0.08 to 0.88. All Canadian Western Red Spring (CWRS) cultivars tested were Mn sensitive. Cultivars bred for high yield were more Mn tolerant, especially 'Norquay' (RWI = 0.88) which was the only cultivar with a RWI > 0.70. The cultivars 'Norquay' and 'Columbus' were selected as standards for Mn tolerance and Mn sensitivity, respectively. 'Norquay' showed maximum root growth at 100 μM Mn, a concentration which was toxic to 'Columbus', and differential tolerance was maintained up to 1000 μM Mn in solution. Differences between 'Norquay' and 'Columbus', grown in excess Mn, were also observed in the accumulation of biomass with time. In contrast with previous studies, Mn tolerance was positively correlated with Al tolerance (R2 = 32.7, p = 0.001) in the cultivars tested.


2016 ◽  
Vol 141 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Yawadee Srimake ◽  
Susan C. Miyasaka

Aluminum (Al) toxicity in acid soils is a major constraint to global agricultural production, affecting ≈30% of the world’s arable land area. To study Al tolerance in barrel medic (Medicago truncatula), we assessed responses to excess Al in 91 accessions collected from different geographic regions. Root elongations were used to characterize the sensitivity of each accession. Seedlings were grown in an agarose medium that contained three levels of Al (50, 100, and 200 µm), and root elongation was measured at 72 hours after exposure to Al. The ratio of root elongation in the presence and absence of Al [relative root growth (RRG)] differed among accessions. At 50 µm Al, we observed the greatest range of intraspecific variation. Aluminum sensitivity of 30 accessions was tested further by hematoxylin staining. Relative root growth was regressed linearly against the visual staining score, and a significant, negative, linear relationship was found between RRG at 50 or 100 µm Al and the intensity of staining scores. Twelve selected accessions differing in their resistance were grown in Al-toxic soil to confirm their Al response. Such information could be useful in breeding or selecting for improved Al tolerance in barrel medic, as well as other crop species.


1990 ◽  
Vol 41 (2) ◽  
pp. 253 ◽  
Author(s):  
WS Meyer ◽  
CS Tan ◽  
HD Barrs ◽  
RCG Smith

The dynamics of root development and water uptake in undisturbed and repacked clay soil were studied during increasing soil water deficit pre- and post-anthesis to find how root distribution, soil type and plant development affect plant available water (PAW). Volumetric water fraction was measured with a neutron probe, while root distribution was measured non-destructively using a series of horizontal perspex observation tubes. Soil modification affected the downward root growth which changed little over time for undisturbed (U) soil (6.7-13.6 mm/d) compared with the repacked (R) soil (7.5-42.9 mm). In the well-watered treatments root distribution was mostly above the 0.55 m depth in U soil, while there was a reasonably uniform vertical distribution in R soil. The rate of root growth during post-anthesis drying was 61% of that during pre-anthesis drying. The specific root water uptake rate (vol./unit root length/time) was linearly related to the relative root growth rate, indicating the importance of root growth in supplying water during soil drying. Estimated PAW values reflected effects of soil hydraulic properties, root distribution and a propensity to grow new roots during soil drying. Differences in grain yield between treatments were thought to result from the effects of different root distributions and the propensity to grow roots during soil drying.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


2007 ◽  
Vol 25 (3) ◽  
pp. 145-149
Author(s):  
Amy N. Wright ◽  
Robert D. Wright ◽  
Brian E. Jackson ◽  
Jake F. Browder

Abstract Post-transplant root growth is critical for landscape plant establishment. The Horhizotron™ provides a way to easily measure root growth in a wide range of rhizosphere conditions. Mountain laurel (Kalmia latifolia L.) plants were removed from their containers and planted in Horhizotrons in a greenhouse in Auburn, AL, and outdoors in Blacksburg, VA. Each Horhizotron contained four glass quadrants extending away from the root ball, and each quadrant within a Horhizotron was filled with a different substrate (treatment): 1) 100% pine bark (Pinus taeda L., PB), 2) 100% soil, 3) a mixture of 50:50 (by vol) PB:soil, or 4) 100% soil along the bottom of the quadrant to a depth of 10 cm (4 in) and 100% PB layered 10 cm (4 in) deep on top of the soil. Root growth along the glass panes of each quadrant was measured bi-weekly in Auburn and weekly in Blacksburg. In both locations, roots were longer in all treatments containing pine bark than in 100% soil. When pine bark was layered on top of soil, roots grew into the pine bark but did not grow into the soil. Results suggest that amending soil backfill with pine bark can increase post-transplant root growth of container-grown mountain laurel.


Sign in / Sign up

Export Citation Format

Share Document