scholarly journals ОБ УПРАВЛЕНИИ ИНТЕНСИВНОСТЬЮ КОНВЕКЦИИ ХИМИЧЕСКИ РЕАГИРУЮЩЕГО ГАЗА

2021 ◽  
Vol 6 (12(81)) ◽  
pp. 40-47
Author(s):  
И. Палымский ◽  
П. Фомин ◽  
А. Трилис

A linear analysis of the stability of Rayleigh-Benard static regime convection is performed in a chemically reacting equilibrium hydrogen-oxygen gas mixture with added chemically inert microparticles of aluminum oxide. It is shown in the Boussinesq approach that a suitable choice of temperature can intensify convection and adding chemically inert microparticles can suppress convective motion. It is established that the isobaric convection regime is realized when the height of the region is less than the critical value, and when the height of the region exceeds this critical value, the convection regime is superadiabatic. During convection in the superadiabatic regime, its adiabatic suppression is observed. Within the framework of the isobaric convection regime, the limits of applicability of the Boussinesq approach are determined.

2014 ◽  
Vol 06 (04) ◽  
pp. 1450037
Author(s):  
MUKESH KUMAR AWASTHI

We study the linear analysis of electrohydrodynamic capillary instability of the interface between a viscous fluid and viscoelastic fluid of Maxwell type, when the phases are enclosed between two horizontal cylindrical surfaces coaxial with the interface, and when fluids are subjected to the radial electric field. Here, we use an irrotational theory known as viscous potential flow (VPF) theory in which viscosity enters through normal stress balance but shearing stresses are assumed to be zero. A quadratic dispersion relation that accounts for the growth of axisymmetric waves is obtained and stability criterion is given in terms of a critical value of wave number as well as electric field. It is observed that the radial electric field has dual effect on the stability of the system.


2005 ◽  
Vol 2005 (23) ◽  
pp. 3727-3737 ◽  
Author(s):  
Jitender Singh ◽  
Renu Bajaj

Effect of an axially applied magnetic field on the stability of a ferrofluid flow in an annular space between two coaxially rotating cylinders with nonaxisymmetric disturbances has been investigated numerically. The critical value of the ratioΩ∗of angular speeds of the two cylinders, at the onset of the first nonaxisymmetric mode of disturbance, has been observed to be affected by the applied magnetic field.


2020 ◽  
Vol 28 (6) ◽  
pp. 1566-1581
Author(s):  
Bahador Akbari ◽  
Asghar Lashanizadegan ◽  
Parviz Darvishi ◽  
Abdolrasoul Pouranfard
Keyword(s):  

1955 ◽  
Vol 59 (535) ◽  
pp. 506-509
Author(s):  
A. M. Dobson

The Classical method of solution of the stability of an axially–loaded continuous beam is by means of the three moments equation, using the Berry Functions, which are functions of the axial load. As the axial load approaches a value equal to the critical value for a pin–jointed beam, the Berry Functions tend to infinity, and the use of the three moments equations —(i. e. treating the end fixing moments as the independent variables)—leads to certain difficulties in the complete solution of the problem.The major difficulty lies in the question of stability. The critical value is determined by the vanishing of the determinant of the coefficients of the fixing moments in the three moments equations. This value could be found by plotting the determinant against end load (c. f. Pippard and Pritchard). However, in a problem involving a large number of bays, the calculation necessary to do this is likely to be considerable, for there may be many branches to the curve.


2014 ◽  
Vol 694 ◽  
pp. 288-291
Author(s):  
Run Ze Duan ◽  
Zhi Ying Chen ◽  
Li Jun Yang

An electrified liquid sheet injected into a dielectric moving through a viscous gas bounded by two horizontal parallel flat plates of a transverse electric field is investigated with the linear analysis method. The liquid sheet velocity profile and the gas boundary layer thickness are taken into account. The relationship between temporal growth rate and the wave number was obtained using linear stability analysis and solved using the Chebyshev spectral collocation method. The effects of the velocity profile on the stability of the electrified liquid sheet were revealed for both sinuous mode and varicose mode. The results show that the growth rate of the electrified Newtonian liquid is greater than that of corresponding Newtonian one under the same condition, and the growth rate of the sinuous mode is greater than that of the varicose mode. Keywords: instability; planar liquid sheet; velocity profile;spectral method;linear analysis


Author(s):  
Sakir Amiroudine

The case of a supercritical fluid heated from below (Rayleigh-Bénard) in a rectangular cavity is first presented. The stability of the two boundary layers (hot and cold) is analyzed by numerically solving the Navier-Stokes equations with a van der Waals gas and stability diagrams are derived. The very large compressibility and the very low heat diffusivity of near critical pure fluids induce very large density gradients which lead to a Rayleigh–Taylor-like gravitational instability of the heat diffusion layer and results in terms of growth rates and wave numbers are presented. Depending on the relative direction of the interface or the boundary layer with respect to vibration, vibrational forces can destabilize a thermal boundary layer, resulting in parametric/Rayleigh vibrational instabilities. This has recently been achieved by using a numerical model which does not require any equation of state and directly calculates properties from NIST data base, for instance.


Sign in / Sign up

Export Citation Format

Share Document