scholarly journals STATE, CHALLENGES AND PROSPECTS OF DEVELOPMENT OF THE METHOD FOR SIMULTANEOUS-SEPARATE OPERATION OF WELLS USING ECP UNITS IN THE MULTIHORIZON FIELDS OF WEST SIBERIA

2015 ◽  
pp. 19-25
Author(s):  
V. A. Afanasiev ◽  
S. N. Bastrikov ◽  
V. A. Popov

To create the operable equipment for simultaneous-separate operation of wells by electrical centrifugal pumping units (“SSO-ECP”) the experience gained by domestic and foreign specialists in this equipment designing, manufacturing and introduction was studied. It is offered to experimentally apply the assembly of SSO-ECP -A unit in wells being in operation for development of multihorizon fields with the purpose to increase these horizons oil recovery factor and current flow rates of wells. It is shown that for perspective development of SSO-ECP it is necessary to speed up the designing process and to arrange the commercial production of automated well systems of flow rate control and water encroachment of layers separated in the borehole, well chokes, and to prepare the industry «Methodical recommendations for designing the SSO technologies in multihorizon oil fields of Russia».

1983 ◽  
Vol 105 (2) ◽  
pp. 194-199
Author(s):  
J. D. Wright ◽  
M. Masterson

Solar thermal electric power and industrial process heat systems may require a constant outlet temperature from the collector. This temperature may be efficiently maintained by adjusting the circulating fluid flow rate. Using frequency response techniques, simple relations are developed which relate controller tuning constants to collector construction and field layout. Successful controller tuning is shown to be a compromise between good response at high flow rates and stability at low flow rates. The rules of thumb are then tested by performing dynamic numerical simulations of a collector row with flow rate control.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marie L. Salva ◽  
Yuksel Temiz ◽  
Marco Rocca ◽  
Yulieth C. Arango ◽  
Christof M. Niemeyer ◽  
...  

AbstractFlow rates play an important role in microfluidic devices because they affect the transport of chemicals and determine where and when (bio)chemical reactions occur in these devices. Flow rates can conveniently be determined using external peripherals in active microfluidics. However, setting specific flow rates in passive microfluidics is a significant challenge because they are encoded on a design and fabrication level, leaving little freedom to users for adjusting flow rates for specific applications. Here, we present a programmable hydraulic resistor where an array of “electrogates” routes an incoming liquid through a set of resistors to modulate flow rates in microfluidic chips post-fabrication. This approach combines a battery-powered peripheral device with passive capillary-driven microfluidic chips for advanced flow rate control and measurement. We specifically show a programmable hydraulic resistor composed of 7 parallel resistors and 14 electrogates. A peripheral and smartphone application allow a user to activate selected electrogates and resistors, providing 127 (27-1) flow resistance combinations with values spanning on a 500 fold range. The electrogates feature a capillary pinning site (i.e. trench across the flow path) to stop a solution and an electrode, which can be activated in a few ms using a 3 V bias to resume flow based on electrowetting. The hydraulic resistor and microfluidic chip shown here enable flow rates from ~0.09 nL.s−1 up to ~5.66 nL.s−1 with the resistor occupying a footprint of only 15.8 mm2 on a 1 × 2 cm2 microfluidic chip fabricated in silicon. We illustrate how a programmable hydraulic resistor can be used to set flow rate conditions for laminar co-flow of 2 liquids and the enzymatic conversion of a substrate by stationary enzymes (alkaline phosphatase) downstream of the programmable hydraulic resistor.


2015 ◽  
pp. 26-30
Author(s):  
A. V. Podnebesnykh ◽  
S. V. Kuznetsov ◽  
V. P. Ovchinnikov

On the example of the group of fields in the West Siberia North the basic types of secondary changes in reservoir rocks are reviewed. Some of the most common types of such changes in the West Siberian plate territory include the processes of zeolitization, carbonation and leaching. These processes have, as a rule, a regional character of distribution and are confined to the tectonically active zones of the earth's crust. Due to formation of different mineral paragenesises the secondary processes differently affect the reservoir rocks porosity and permeability: thus, zeolitization and carbonization promote to reducing the porosity and permeability and leaching improvement. All this, ultimately leads to a change of the oil recovery factor and hydrocarbons production levels. Study and taking into account of the reservoir rocks secondary change processes can considerably influence on placement of operating well stock and on planning of geological and technological actions.


2006 ◽  
Vol 1127 (1-2) ◽  
pp. 214-220 ◽  
Author(s):  
Yuushi Sai ◽  
Masumi Yamada ◽  
Masahiro Yasuda ◽  
Minoru Seki

Author(s):  
Lie Tang ◽  
Jianzhong Ruan ◽  
Robert G. Landers ◽  
Frank Liou

This paper proposes a novel method, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that the VPFRC method is successful in maintaining a uniform track morphology, even when the motion system accelerates and decelerates.


Author(s):  
Shuai Wu ◽  
Richard Burton ◽  
Zongxia Jiao ◽  
Juntao Yu ◽  
Rongjie Kang

This paper considers the feasibility of a new type of voice coil motor direct drive flow control servo valve. The proposed servo valve controls the flow rate using only a direct measurement of the spool position. A neural network is used to estimate the flow rate based on the spool position, velocity and coil current. The estimated flow rate is fed back to a closed loop controller. The feasibility of the concept is established using simulation techniques only at this point. All results are validated by computer co-simulation using AMESim and Simulink. A simulated model of a VCM-DDV (Voice Coil Motor-Direct Drive Valve) and hydraulic test circuit are built in an AMESim environment. A virtual digital controller is developed in a Simulink environment in which the feedback signals are received from the AMESim model; the controller outputs are sent to the VCM-DDV model in AMESim (by interfacing between these two simulation packages). A LQR (Linear Quadratic Regulator) state feedback and nonlinear compensator controller for spool position tracking is considered as this is the first step for flow control. A flow rate control loop is subsequently included via a neural network flow rate estimator. Simulation results show that this method could control the flow rate to an acceptable degree of precision, but only at low frequencies. This kind of valve can find usage in open loop hydraulic velocity control in many industrial applications.


Author(s):  
Gaffar G. Momin

Cavitation phenomenon is basically a process formation of bubbles of a flowing liquid in a region where the pressure of the liquid falls below its vapour pressure and it is the most challenging fluid flow abnormalities leading to detrimental effects on both the centrifugal pump discharge characteristics as well as physical characteristics. In this low pressure zones are the first victims of cavitation. Due to cavitation pitting of impeller occurs and wear of internal walls of pumps occurs due to which there is creation of vibrations and noize are there. Due to this there is bad performance of centrifugal pump is there. Firstly, description of the centrifugal pump with its various parts are described after that pump characteristics and its important parameters are presented and discussed. Passive discharge (flow rate) control methods are utilized for improvement of flow rate and mechanical and volumetric and overall efficiency of the pump. Mechanical engineers is considering an important phenomenon which is known as Cavitation due to which there is decrease in centrifugal pump performance. There is also effect on head of the pump which is getting reduced due to cavitation phenomenon. In present experimental investigation the cavitation phenomenon is studied by starting and running the pump at various discharges and cavitating conditions of the centrifugal pump. Passive discharge (flow rate) control is realized using three different impeller blade leading edge angles namely 9.5 degrees, 16.5 degrees .and 22.5 degrees for reduction in the cavitation and increase the of the centrifugal pump performance at different applications namely, domestic, industrial applications of the centrifugal pump.


Sign in / Sign up

Export Citation Format

Share Document