scholarly journals MODELING OF Q-H CHARACTERISTICS OF THE ELECTRIC DRIVE WITH A VORTEX ELECTRICAL PUMP

2015 ◽  
pp. 133-137
Author(s):  
A. M. Sagdatullin

In this paper we consider the possibility of modeling the performance characteristics of the electric drive with a vortex electric pump. The structure of the vortex electric pump studied for the experiment is considered, as well as its Q-H characteristic. To determine the optimal control limit of square-law characteristic of H = f (Q) we offer an ade-quate mathematical model of working Q-H characteristics of the electric vortex pump Pk 200. It is concluded that for studying and searching for optimal performances of the vortex pump Pk 200 the model of square-law characteristic H = f (Q) in accordance with the general expression for the working section can be applied within a certain range of values, i.e. the flow rate from Q1 (1,5) to Q2 (3,5) and the pressure from H1 (67) to H2 (30).

1976 ◽  
Vol 98 (2) ◽  
pp. 161-166 ◽  
Author(s):  
J. S. Ansari

A heat exchanger with boiling is considered. The final temperature of steam is controlled with the help of a controller which regulates the flow rate of by-pass water mixing with the outcoming steam. The simplest known mathematical model retaining the nonlinear and distributed parameter nature of the process is adopted. A known method of analysis, namely, Liapunov-Razumikhin theorem, is used to derive results on stability. An interesting feature of the system is that a positive feedback is required for stability. If the control is designed on the basis of minimization of the error in the final temperature alone, then the optimal control, requiring a negative feeedback, leads to sustained oscillations in the intermediate variables, even when the output is steady. The analysis, therefore suggests that meaningful optimization must take into account fluctuations in intermediate variables in addition to the error. A derivative control is shown to improve the transient response.


Author(s):  
T. V. Sinyukova ◽  
A. V. Sinyukov

THE PURPOSE. To develop and investigate a mathematical model of an operating object – an individual heat point with two methods of controlling the temperature of the coolant. In the first case, the control of the temperature of the coolant is considered, with the help of a control valve installed on a real object. In the second case, a more reliable and less energy-consuming solution is proposed – replacing the control valve with a frequency- controlled electric drive operating according to the proposed optimal algorithm. METHODS. When solving this problem, the method of computer simulation modeling, implemented by means of Matlab Simulink, was used.RESULTS. The article deals with the problems that arise during the operation of an individual heating point. Possible solutions to the problem associated with the failure of the control valve are given. A solution for regulating the temperature of the coolant is proposed, based on the use of a frequency-controlled electric drive of the electric pump. To implement the proposed solution, no redevelopment of the premises is required, only the installation of a frequency converter on the pump already available in the device of an individual heat station is necessary. CONCLUSION. The conducted research has a practical focus, since the proposed solution is implemented at the existing facility. The use of a frequency-controlled electric drive of a centrifugal pump made it possible to increase the reliability of the existing facility. The results obtained during the simulation allow us to draw a conclusion about the feasibility of using the proposed solution.


2013 ◽  
Vol 705 ◽  
pp. 546-552
Author(s):  
Imankul Toleukhan

Among the problems of the rotor machines dynamics the special attention is given to the problems of creation of the automatic balancing devices (ABD) in form of a hollow rotor, filled by a liquid, and the liquid-solidbody ABD. The theoretical and experimental works on research of the ABD on the base of a hollow rotor filled partially with a liquid and of the liquid-solidbody ABD are not enough. Therefore development of the methods of research of dynamics of the rotor machines with the ABD and such machines designs is an actual, new and perspective problem. In the present work the mathematical model of the rotor system with the ABD taking into account of the engine characteristics is offered. Lets consider the model of the rotor with electric drive with one disk, set up at the flexible shaft without skew. The shaft is lean on two bearings (fig. 1).


2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

Author(s):  
Yuchuan Zhu ◽  
Chang Liu ◽  
Yunze Song ◽  
Long Chen ◽  
Yulei Jiang ◽  
...  

In this paper, an electro-hydrostatic actuator driven by dual axial-mounted magnetostrictive material rods-based pumps (MMPs) with a new type of active rectification valve is designed in the current study. Based on flow distribution of the active rectification valve and driving energy provided by two MMPs, the actuator can output continuous and bidirectional displacement. By establishing a mathematical model of the actuating system, using simulation techniques, the change rule of hydraulic cylinder’s motion state caused by different driving signals are studied and analyzed. Test equipment platform is constructed in the laboratory to test the output characteristics and confirm the feasibility of the new concept. The experimental results indicate that the maximum flow rate can reach approximately 2.7 L·min−1, while the operating frequency is 180 Hz.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Vladimir Dotsenko ◽  
Roman Prokudin ◽  
Alexander Litvinenko

The article deals with the optimal control of the positional electric drive of the stator element of a segment-type wind turbine. The calculation options charts current in the assumption of the minimum energy consumption and the implementation of line chart current using the phenomenon of capacitor discharge. The analysis of the implementation is expressed in a jump-like change in current and a triangular graph of the speed change. This article deals with small capacity synchronous wind turbine generators with a segment type stator. These units have the possibility of intentionally changing the air gap between the rotor and stator. This allows: (1) Reduce the starting torque on the rotor shaft, which will allow the rotor to pick up at low wind speeds. (2) Equivalent to change of air gap in this case is change of excitation of synchronous generators. Thus, the purpose of the article is to consider a method of excitation of generators in a segmented design, by controlling the gap with the electric drive, while providing control should be carried out with minimal losses.


2011 ◽  
Vol 8 (3-4) ◽  
pp. 309-321 ◽  
Author(s):  
S. K. Pandey ◽  
Dharmendra Tripathi

This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis Newtonian fluid is investigated analytically and numerically too. The result is physically interpreted as that the oesophagus makes more efforts to swallow fluids with higher concentration. It is observed that the pressure is uniformly distributed when an integral number of waves is there in the oesophagus; but it is non-uniform when a non-integral number of waves is present therein. It is further observed that as the plug flow region widens, the pressure difference increases, which indicates that the averaged flow rate will reduce for a Casson fluid. It is also concluded that Casson fluids are more prone to reflux.


Sign in / Sign up

Export Citation Format

Share Document