scholarly journals Effect of S14161 Small Molecule and Glaucium Flavum Extract on A549 Cancer Cells

2021 ◽  
Vol 10 ◽  
pp. e2151
Author(s):  
Mahshad Kalantari ◽  
Maliheh Entezari ◽  
Milad Ashrafizadeh ◽  
Abolfazl Movafagh ◽  
Kiavash Hushmandi

Background: Lung cancer is the fifth most common cancer in Iran. Due to the side effects of common cancer treatments, everyone has turned to herbal remedies and new treatments. This study aimed to compare the effect of S14161 small molecule and Glaucium flavum extract on the induction of apoptosis in A549 cancer cells. Materials and Methods: In this experimental study, the A549 cell line was treated with different concentrations of G. flavum and S14161 on days 1, 3, and 5. Also, half maximal inhibitory concentrations (IC 50) for both G. flavum and S14161 were measured. In addition, the quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to investigate the effects of S14161 and G. flavum extract on the expressions level of Bax, Bad, P53, and Bcl2 genes. Results: Results showed that both the combination of S14161 and G. flavum extract resulted in cell death and reduced cancer cell viability. Nevertheless, the viability rate was greater by S14161, and this small molecule significantly increased the expression of Bax, P53, and Bad apoptotic genes and decreased the expression of the Bcl2 gene, which shows the induced apoptotic death and lethal effect of S14161 in comparison with G. flavum extract. Conclusion: Our study showed that S14161 had fewer IC50 and caused cell death by inhibiting the PI3K/AKT pathway, and G. flavum caused cancer cell death due to its alkaloid compounds. Therefore, both compounds are recommended as drug candidates for the treatment of lung cancer.

MedChemComm ◽  
2016 ◽  
Vol 7 (6) ◽  
pp. 1197-1203 ◽  
Author(s):  
Ravindra M. Kumbhare ◽  
Tulshiram L. Dadmal ◽  
Dinesh Kumar ◽  
M. Janaki Ramaiah ◽  
Anudeep Kota ◽  
...  

Fluorinated thiazolidinols cause A549 lung cancer cell death by acting via PI3K/Akt/mTOR and MEK/ERK pathways.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ding Yan ◽  
Xiaofen Li ◽  
Qianqian Yang ◽  
Qingtian Huang ◽  
Leyi Yao ◽  
...  

AbstractDeubiquitinates (DUBs) have been suggested as novel promising targets for cancer therapies. Accumulating experimental evidence suggests that some metal compounds have the potential to induce cancer cell death via inhibition of DUBs. We previously reported that auranofin, a gold(I)-containing agent used for the treatment of rheumatoid arthritis in clinics, can induce cell death by inhibiting proteasomal DUBs in a series of cancer cell lines. Unfortunately, currently available gold compounds are not potent in inhibiting DUBs. Here, we report that: (i) aumdubin, a synthetic derivative of auranofin, exhibited stronger DUB-inhibiting and apoptosis-inducing activities than auranofin in lung cancer cells; (ii) aumdubin shows high affinity for mitochondrial DUB USP30; (iii) aumdubin induces apoptosis by increasing the ubiquitination and mitochondrial location of Bax protein; and (iv) USP30 inhibition may contribute to Bax-dependent apoptosis induced by aumdubin in lung cancer cells. These results suggest that gold(I)-containing agent aumdubin induces Bax-dependent apoptosis partly through inhibiting the mitochondrial DUB USP30, which could open new avenues for lung cancer therapy.


Author(s):  
Tina Nasrin ◽  
Mousumi Patra ◽  
Sayed Modinur Rahaman ◽  
Tapan Kumar Das ◽  
Soni Shaikh

Background: The World Health Organization (WHO) estimated that the number of cancer-related deaths was 9.6 million in 2018 and 2.09 million deaths occurred by lung cancer. The American Institute for Cancer Research (AICR) also observed gender preferences in lung cancer, common in men than women. Since the past decade, nanoparticles have now been widely documented for their anti-cancer properties, which signifies that the development of nanotechnology would be a future diagnosis and treatment strategy for lung cancer. Objective: The current study aimed to investigate the role of biosynthesized CdS nanoparticles (CdS NPs) in lung cancer cells (A549). Therefore, whether the CdS NP induces lung cancer cell death and the underlying mechanism is yet to be elucidated. Methods: Literature was searched from various archives of biomedical and life science journals. Then, CdS NPs were biosynthesized and characterized by traditional and cutting-edge protocols. The CdS NP-mediated cell death was elucidated following standard protocols. Results : CdS NPs induced cytotoxicity towards A549 cells in a dose-dependent manner. However, such a death mechanism does not go through necrosis. Intracellular reactive oxygen species (ROS) accumulation and mitochondrial membrane depolarization demonstrated that cell death is associated with intracellular ROS production. Furthermore, increased sub-G1 population, Bax expression, and decreased Bcl-2 expression revealed that the death was caused by apoptosis. Conclusion: CdS NPs promote apoptosis-mediated lung cancer cell death through ROS production.


2021 ◽  
Author(s):  
Wooram Park ◽  
Seok-Jo Kim ◽  
Paul Cheresh ◽  
Jeanho Yun ◽  
Byeongdu Lee ◽  
...  

Mitochondria are crucial regulators of the intrinsic pathway of cancer cell death. The high sensitivity of cancer cells to mitochondrial dysfunction offers opportunities for emerging targets in cancer therapy. Herein,...


2019 ◽  
Vol 7 (30) ◽  
pp. 4706-4716 ◽  
Author(s):  
Dan Liu ◽  
Angelina Angelova ◽  
Jianwen Liu ◽  
Vasil M. Garamus ◽  
Borislav Angelov ◽  
...  

Novel cell-penetrating peptides self-assemble into ellipsoid-shape nanostructures which amplified the apoptotic stimuli by weakening the VDAC1–HK-II interaction.


2016 ◽  
Vol 7 (9) ◽  
pp. 5995-6005 ◽  
Author(s):  
Jingye Zhang ◽  
Zining Liu ◽  
Peng Lian ◽  
Jun Qian ◽  
Xinwei Li ◽  
...  

A theranostic probe is designed that specifically illuminates and photoablates cancer cells by sensing pH changes in the lysosomes and mitochondria.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Roberta Palorini ◽  
Tiziana Simonetto ◽  
Claudia Cirulli ◽  
Ferdinando Chiaradonna

Cancer cells generally rely mostly on glycolysis rather than oxidative phosphorylation (OXPHOS) for ATP production. In fact, they are particularly sensitive to glycolysis inhibition and glucose depletion. On the other hand mitochondrial dysfunctions, involved in the onset of the Warburg effect, are sometimes also associated with the resistance to apoptosis that characterizes cancer cells. Therefore, combined treatments targeting both glycolysis and mitochondria function, exploiting peculiar tumor features, might be lethal for cancer cells. In this study, we show that glucose deprivation and mitochondrial Complex I inhibitors synergize in inducing cancer cell death. In particular, our results reveal that low doses of Complex I inhibitors, ineffective on immortalized cells and in high glucose growth, become specifically cytotoxic on cancer cells deprived of glucose. Importantly, the cytotoxic effect of the inhibitors on cancer cells is strongly enhanced by forskolin, a PKA pathway activator, that we have previously shown to stimulate OXPHOS. Taken together, we demonstrate that induction in cancer cells of a switch from a glycolytic to a more respirative metabolism, obtained by glucose depletion or mitochondrial activity stimulation, strongly increases their sensitivity to low doses of mitochondrial Complex I inhibitors. Our findings might be a valuable approach to eradicate cancer cells.


Sign in / Sign up

Export Citation Format

Share Document