scholarly journals A Glance at the Errors of Some Studies on the Health Effects of High Background Natural Radiation Areas

Author(s):  
J Eslami ◽  
S M J Mortazavi ◽  
S A R Mortazavi

There is no place on the Earth, the planet we live on, where the natural background radiation level is zero. Since the birth and even in our fetal stage, we have been exposed to different sources of natural radiation. Life, in fact, evolved in a radiation environment that was much more harsh than today. Earth serves as a source of terrestrial radiation. Uranium, thorium, and radium are among the radioactive materials that naturally exist in soil and rock. Moreover, the air, we breathe, contains radon, a colorless, odorless, radioactive gas that is created naturally by the radioactive decay of uranium and radium. The crucial importance of the studies on the health effects of living in areas with high levels of background radiation for understanding the biological impact of exposure to low doses of ionizing radiation is well documented. Despite the undeniable need for accurate information about the health effects of exposure to high levels of background radiation, many published papers suffer from methodological and other common types of errors. In this paper, we review three articles published on high background radiation areas. The first paper has addressed the frequencies of unstable (dicentrics& rings), stable (translocations & inversions), and other types of chromosome aberration in adult men from both high background radiation areas of Kerala and areas with normal background radiation. The second paper has addressed different aspects of the world’s high background natural radiation areas. Finally, the third paper has tried to address the role of background radiation on males to females’ ratio at birth. The author has mainly referred to the studies performed on the impact of radiation exposures from nuclear testing (worldwide) and Chernobyl fallout (in Europe).The major shortcomings of these three papers, especially methodological errors, which affected the accuracy of their findings and conclusions are discussed.

2016 ◽  
Vol 1 (2) ◽  
pp. 116
Author(s):  
Pandu Dewanto ◽  
Setyo Sarwanto Moersidik ◽  
Sucipta Sucipta

Near Surface Disposal (NSD) for Radioactive Waste that should be developed due to increment of the low level radioactive waste, need to be analyzed and evaluated related to the radiological impact of the environment. A research method applied is done by modeling the distribution of radionuclide releases process. Analysis related with the releases of radionuclide in water and soil is using PRESTO (Prediction of Radiological Effects Due to Shallow Trench Operations). The application scenarios selected in this safety assessment is the migrations of Co-60 and Cs-137 scenario through the shallow groundwater flow pattern in the NSD site. The SigmaPlot software is also used to determine the concentration equation in well water and river water. The final results showed the concentration of radionuclide in wells and streams below the provision. Radionuclide activity concentrations in well ranged from 10<sup>-10</sup>Bq/m<sup>3</sup> to 10<sup>0</sup>Bq/m<sup>3</sup> and in the river ranged from 10<sup>-15</sup>Bq / m<sup>3</sup> to 10<sup>-1</sup>Bq / m3. The impact of radioactive waste of radionuclide Co-60 and Cs-137 will decrease to the background radiation level at a distance less than 10m and penetrate into the saturated layer up to 4m. In this study, an equation have been obtained that can predict radionuclide concentration patterns based on the distance and the depth of the ground surface against to the facility operation time.


2019 ◽  
Vol 9 (3Jun) ◽  
Author(s):  
S M J Mortazavi ◽  
Gh Mortazavi ◽  
S A R Mortazavi ◽  
M Paknahad

Man has been exposed to different levels of natural background radiation since the creation of human life. There are inhabited areas around the world with extraordinary levels of natural background radiation. The level of natural radiation in these areas is up to two orders of magnitude higher than other places. Areas such as Yangjiang, China; Guarapari, Brazil; and Kerala, India are among the areas with high levels of natural radiation. Ramsar a coastal city in North Iran has some inhabited areas with the highest known levels of background radiation around the world. People who live in high background radiation areas (HBRAs) such as Ramsar do not record any detrimental biological effects. While some cytogenetic studies conducted in HBRAs have shown increased frequencies of unstable chromosome aberration, other investigations failed to find a significant difference. This short review is an attempt to verify if induction of chromosomal anomalies in the lymphocytes of the residents of high background radiation areas is associated with increased cancer risk.


1988 ◽  
Vol 24 (1-4) ◽  
pp. 407-410 ◽  
Author(s):  
A. Battaglia ◽  
L. Bramati

Abstract For siting of a coal-fired power station in the Apulia region, ENEL (Ente Nazionale Energia Elettrica) carried out an environmental impact evaluation. Owing to the natural radioactivity in the coal and in the ash, the local authorities required an investigation of the environmental radioactivity in the area. Measurements on the radiation level, of radioactivity concentrations in soil and of radon concentration in the air were carried out at selected points on the basis of the expected atmospheric diffusion and ash disposal. At some points higher than normal radiation levels and some disequilibrium in the natural uranium decay products were observed due to hydrogeological events in the soils near the coast. A comparison is made of the radiological impact by the power plant operation and the impact due to the natural radiation environment.


Author(s):  
S Abbasi ◽  
S A R Mortazavi ◽  
S M J Mortazavi

Considering current controversies regarding the health effects of low doses of ionizing radiation, study of the high background radiation areas such as Ramsar, Iran can help scientists better evaluate the validity of linear no-threshold (LNT) hypothesis. Ramsar is a coastal city in northern Iran with some areas known to have the highest levels of natural background radiation in the world. The mean annual dose of the residents of high background radiation areas (HBRAs) of Ramsar is 10 times higher than the public dose limit recommended by the ICRP (1 mSv/year) and a proportion of the residents receive annual doses as large as 260 mSv (13 times higher than the occupational dose limit recommended by the ICRP). A report published in Popular Science proclaims that background radiation in Ramsar approaches that of the Martian surface. However, estimates show that the maximum annual radiation dose in HBRAs of Ramsar can be much higher than that of the Martian surface (260 mGy/y vs 76 mGy/y). Furthermore, a Guardian report introduces Talesh Mahalleh, a district in Ramsar, as an inhabited area with the highest levels of natural radioactivity in the world and C Net claims that the best Mars colonists may come from places like Iran and Brazil. In spite of current concerns, nearly all residents still live in their paternal dwellings and there are not consistent reports on any detrimental effects. It is worth noting that, due to small sample size, to draw a firm conclusion about the health effects of high level natural radiation in Ramsar, in particular about the cancer risk, current information is not sufficient and further studies are needed.


2017 ◽  
pp. 92-95
Author(s):  
T Timilsina ◽  
K. R. Poudel ◽  
P. R. Poudel

This study presents general exposure of background radiation to the people living or visiting nine places of Syangja district. A portable GM counter was used to quantify the total radiation at those places. The findings of this study show variation of radiation level at different places. Comparatively large values of radiation counts are observed at high altitude places (Gurung Dada: 70.23 cpm and Pokhari Dada: 64.77 cpm). The value of radiation count inside room is comparatively larger than that at outside room for these places. Moreover, small value of radiation count is observed at river side (Bank of Aandhikhola river: 21.63 cpm). Little large values are observed near Saligram stones and ancient statue than at other regions of one historical/religious place. Hence, results show fluctuations of background radiation level for different places. Some places have comparatively large value of radiation count while some places have comparatively small value. But there is no any abnormal value of radiation counts for all sample places. So there is, generally, no significant risk of public exposure to the background radiation for sample places.The Himalayan Physics Vol. 6 & 7, April 2017 (92-95)


2020 ◽  
Vol 16 (4) ◽  
pp. 407-414
Author(s):  
Fatemeh Heidari ◽  
Zeinab Shariatmadari ◽  
Hossein Riahi

Background: Microalgae are the source of various compounds with high potentials for being used in different industries. The production of such compounds can be raised under extreme conditions. In the present study, four cyanobacteria and one coccoid green alga were examined which were isolated from hot springs in high background radiation areas in Ramsar, a city in the north of Iran. Methods: Cadmium adsorption from aqueous solution, response towards cadmium stress, antioxidant activity, total phenolic compound and drought tolerance were investigated in these microalgae. Results: The results showed that these extremophile microalgae contain valuable biological compounds which can be useful in remediation of heavy metals from contaminated water and soils and pharmaceutical applications. The unicellular cyanobacterium, Chroococidiopsis thermalis IBRC-M50002, was the best strain with the highest biological activity in various testes such as cadmium adsorption (225 mg g-1), cadmium tolerance stress (100 mg ml-1), antioxidant activity (IC50= 18 μg mg-1) and total phenol content (100 μg ml-1). The coccoid green algae Grasiella emersonii IBRC-M50001, also exhibited significant antioxidant activity (IC50=10 μg mg-1) and total phenol compound (116 μg ml-1), but its cadmium adsorption, tolerance at cadmium stress and desiccation were lower than Chroococidiopsis thermalis. Conclusion: HBRAs microalgae, isolated from extreme conditions, are useful microorganisms for the production of bioactive substances and natural antioxidants. In other words, they exhibited high capacity to be used in pharmaceutical, industrial and commercial applications.


Sign in / Sign up

Export Citation Format

Share Document