scholarly journals Ensuring communication security in wireless sensor networks based on a multilevel protection architecture

Author(s):  
R. M. Boyarchuk ◽  
◽  
M. S. Pukha ◽  
A. P. Makovsʹkyy ◽  
K. D. Aystrakhanov ◽  
...  

Wireless microsensor networks, which are used to monitor the physical environment, have become an important area of application for wireless technologies. The key attributes of these new types of network systems are strictly limited computing and energy resources, as well as a special working environment. This article examines aspects of the communication security of these networks. Resource constraints and the specific architecture of sensor networks require individual security mechanisms. Our approach is to classify the types of data that exist in sensor networks and identify potential threats to communication security according to this classification. We offer a communication security scheme, where for each data type we define the appropriate security mechanism. Using this multi-tiered security architecture, where each mechanism has different resource requirements, we provide efficient resource management, which is important for wireless sensor networks.

Author(s):  
Neetika Jain ◽  
Sangeeta Mittal

Background: Real Time Wireless Sensor Networks (RT-WSN) have hard real time packet delivery requirements. Due to resource constraints of sensors, these networks need to trade-off energy and latency. Objective: In this paper, a routing protocol for RT-WSN named “SPREAD” has been proposed. The underlying idea is to reserve laxity by assuming tighter packet deadline than actual. This reserved laxity is used when no deadline-meeting next hop is available. Objective: As a result, if due to repeated transmissions, energy of nodes on shortest path is drained out, then time is still left to route the packet dynamically through other path without missing the deadline. Results: Congestion scenarios have been addressed by dynamically assessing 1-hop delays and avoiding traffic on congested paths. Conclusion: Through extensive simulations in Network Simulator NS2, it has been observed that SPREAD algorithm not only significantly reduces miss ratio as compared to other similar protocols but also keeps energy consumption under control. It also shows more resilience towards high data rate and tight deadlines than existing popular protocols.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2018 ◽  
Vol 10 (10) ◽  
pp. 102 ◽  
Author(s):  
Yi-Han Xu ◽  
Qiu-Ya Sun ◽  
Yu-Tong Xiao

Forest fires are a fatal threat to environmental degradation. Wireless sensor networks (WSNs) are regarded as a promising candidate for forest fire monitoring and detection since they enable real-time monitoring and early detection of fire threats in an efficient way. However, compared to conventional surveillance systems, WSNs operate under a set of unique resource constraints, including limitations with respect to transmission range, energy supply and computational capability. Considering that long transmission distance is inevitable in harsh geographical features such as woodland and shrubland, energy-efficient designs of WSNs are crucial for effective forest fire monitoring and detection systems. In this paper, we propose a novel framework that harnesses the benefits of WSNs for forest fire monitoring and detection. The framework employs random deployment, clustered hierarchy network architecture and environmentally aware protocols. The goal is to accurately detect a fire threat as early as possible while maintaining a reasonable energy consumption level. ns-2-based simulation validates that the proposed framework outperforms the conventional schemes in terms of detection delay and energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5379
Author(s):  
Gustavo A. Nunez Segura ◽  
Cintia Borges Margi

Resource Constraints in Wireless Sensor Networks are a key factor in protocols and application design. Furthermore, energy consumption plays an important role in protocols decisions, such as routing metrics. In Software-Defined Networking (SDN)-based networks, the controller is in charge of all control and routing decisions. Using energy as a metric requires such information from the nodes, which would increase packets traffic, impacting the network performance. Previous works have used energy prediction techniques to reduce the number of packets exchanged in traditional distributed routing protocols. We applied this technique in Software-Defined Wireless Sensor Networks (SDWSN). For this, we implemented an energy prediction algorithm for SDWSN using Markov chain. We evaluated its performance executing the prediction on every node and on the SDN controller. Then, we compared their results with the case without prediction. Our results showed that by running the Markov chain on the controller we obtain better prediction and network performance than when running the predictions on every node. Furthermore, we reduced the energy consumption for topologies up to 49 nodes for the case without prediction.


2011 ◽  
Vol 55-57 ◽  
pp. 1305-1309
Author(s):  
Zheng Yao ◽  
Zhao Hua Wang

Energy consumption is a critical problem in operation of wireless sensor networks. For the sake of avoiding the data abundance and balancing the energy consumption in wireless sensor networks, this paper makes a research on network nodes Optimization in wireless sensor network based on ant colony algorithm and WIA-PA protocol stack. The novel design improved on hardware and software to control consumption of the energy and used transition probability of ant colony algorithm from one node to the other to calculate and determine the optimal path of network node in traversal of these locations. The results of the examples show that this method has lower energy consumption, computational briefness and higher positioning accuracy; it can not easily run into the local optimum, and also be applied to other tracking of complex network systems.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Yanfei Zheng ◽  
Kefei Chen ◽  
Weidong Qiu

Data aggregation is an essential operation to reduce energy consumption in large-scale wireless sensor networks (WSNs). A compromised node may forge an aggregation result and mislead base station into trusting a false reading. Efficient and secure aggregation scheme is critical in WSN applications due to the stringent resource constraints. In this paper, we propose a method to build up the representative-based aggregation tree in the WSNs such that the sensing data are aggregated along the route from the leaf cell to the root of the tree. In the cinema of large-scale and high-density sensor nodes, representative-based aggregation tree can reduce the data transmission overhead greatly by directed aggregation and cell-by-cell communications. It also provides security services including the integrity, freshness, and authentication, via detection mechanism in the cells.


2007 ◽  
Vol 3 (4) ◽  
pp. 331-346 ◽  
Author(s):  
Wootae Jeong ◽  
Shimon Y. Nof

Recent wireless microsensor network protocols provide more flexible leverage to the applications with dynamically changing topology, but they should be designed to overcome energy constraints, the bandwidth limit, and system latency. Thus, microsensor network protocols should be effective both in energy and in latency. In addition, they should be evaluated through designated tools at each level of networking characteristics. This paper proposes a new Timeout-based Information Forwarding (TIF) protocol for wireless sensor networks. It uses a relatively simple logic to forward the data packet with multi-hop fashion to reduce the overall network energy consumption. The TIF protocol has been implemented into a network evaluation tool, called TIE/MEMS, and provides a design strategy for distributed wireless sensor network systems needed for various emerging applications. The simulated results show that the TIF protocol has low energy consumption and provides design guidelines between energy consumption and latency according to the number of hops by adjusting weight values in the timeout function.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7229
Author(s):  
Min Zhang ◽  
Huating He ◽  
Gengying Li ◽  
Haiyang Wang

Accurate estimation of cable tension is crucial for the structural health monitoring of cable-supported structures. Identifying the cable’s force from its vibration data is probably the most widely adopted method of cable tension estimation. According to string theory, the accuracy of estimated cable tension is highly related to identified modal parameters including natural frequencies and frequency order. To alleviate the factors that impact the accuracy of modal parameters when using the peak-picking method in wireless sensor networks, a fully automated and robust identifying method is proposed in this paper. This novel method was implemented on the Xnode wireless sensor system and validated with the data obtained from Jindo Bridge. The experiment results indicate that, through this method, the wireless sensor is able to distinguish the cognizable power spectrum, extract the peaks, eliminate false frequencies and determine frequency orders automatically to estimate cable tension force without any manual intervention or preprocessing. Meanwhile, the results of natural frequencies, corresponding orders and cable tension force obtained from the Xnode system show excellent agreement with the results obtained using the Matlab program method. This demonstrates the effectiveness and reliability of the Xnode estimation system. Furthermore, this method is also appropriate for other high-performance wireless sensor network systems to realize self-identification of cable in long-term monitoring.


Sign in / Sign up

Export Citation Format

Share Document