scholarly journals Milk urea concentration as an indicator of ammonia emission from dairy cow barn under restricted grazing

2011 ◽  
Vol 94 (1) ◽  
pp. 321-335 ◽  
Author(s):  
G. van Duinkerken ◽  
M.C.J. Smits ◽  
G. André ◽  
L.B.J. Šebek ◽  
J. Dijkstra
2005 ◽  
Vol 88 (3) ◽  
pp. 1099-1112 ◽  
Author(s):  
G. van Duinkerken ◽  
G. André ◽  
M.C.J. Smits ◽  
G.J. Monteny ◽  
L.B.J. Šebek

AGROFOR ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Maarit HELLSTEDT ◽  
Hannu E.S. HAAPALA

Agriculture is the most significant source of Ammonia emission that causes e.g. loss of Nitrogen from agricultural systems. Manure is the main source of Ammonia emissions and causes losses in the nutrient cycles of agriculture as well as local odour nuisance. By using different bedding materials, it is possible to reduce both the Ammonia emissions and to improve the cycling of nutrient. Peat is known as an effective litter material but its use as a virtually non-renewable resource is questionable. Therefore, we need to find new bedding materials to replace peat. In this study, the effect of ten different industrial by-products, reeds and stalks to reduce Ammonia emissions was tested in laboratory in January 2020. Dairy cow slurry and bedding materials were mixed in a volume ratio of 4:1. The Ammonia emission was measured for two weeks once or twice a day. Measurements were performed with a photoacoustic method. The results show that all tested materials reduce the Ammonia emission from the cow slurry used. Interesting new materials to substitute peat are zero fiber and briquetted textile waste. Wheat bran, pellets made of reed canary grass and chopped bulrush had the best effect which is at the same level as that of peat. However, no statistically significant differences between the calculated emission rates were found.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1118 ◽  
Author(s):  
Valeria Giovanetti ◽  
Filippo Boe ◽  
Mauro Decandia ◽  
Giovanni Cristoforo Bomboi ◽  
Alberto Stanislao Atzori ◽  
...  

In dairy sheep milk urea concentration (MUC) is highly and positively correlated with dietary crude protein (CP) content and, to a lesser extent, with protein intake. However, the effect of dietary energy and carbohydrate sources on MUC of lactating ewes is not clear. Thus, the objective of this study was to assess the effects of diets differing in energy concentration and carbohydrate sources on MUC values in lactating dairy ewes. Two experiments were conducted (experiment 1, E1, and experiment 2, E2) on Sarda ewes in mid and late lactation kept in metabolic cages for 23 d. In both experiments, homogeneous groups of five ewes were submitted to four (in E1) or three (in E2) dietary treatments, consisting of pelleted diets ranging from low energy (high-fiber diets: 1.2–1.4 Mcal of net energy for lactation (NEL)) to high energy (high-starch diets: 1.7–1.9 Mcal of NEL) contents, but with a similar CP concentration (18.4% dry matter (DM), on average). Each diet had a different main ingredient as follows: corn flakes, barley meal, beet pulp, or corn cobs in E1 and corn meal, dehydrated alfalfa, or soybean hulls in E2. Regression analysis using treatment means from both experiments showed that the best predictor of MUC (mg/100 mL) was the dietary NEL (Mcal/kg DM, MUC = 127.6 − 51.2 × NEL, R2 = 0.85, root of the mean squared error (rmse) = 4.36, p < 0.001) followed by the ratio CP/NEL (g/Mcal, MUC = −14.9 + 0.5 × CP/ NEL, R2 = 0.83, rmse = 4.63, p < 0.001). A meta-regression of an extended database on stall-fed dairy ewes, including the E1 and E2 experimental data (n = 44), confirmed the predictive value of the CP/ NEL ratio, which resulted as the best single predictor of MUC (MUC = −13.7 + 0.5 × CP/NEL, R2 = 0.93, rmse = 3.30, p < 0.001), followed by dietary CP concentration (MUC = −20.7 + 3.7 × CP, R2 = 0.82, rmse = 4.89, p < 0.001). This research highlights that dietary energy content plays a pivotal role in modulating the relationship between MUC and dietary CP concentration in dairy sheep.


2002 ◽  
Vol 85 (4) ◽  
pp. 939-946 ◽  
Author(s):  
J.S. Jonker ◽  
R.A. Kohn ◽  
J. High

Author(s):  
G.J. Monteny ◽  
J.W. Erisman

This study aimed to make an analytical inventory of ammonia emission data of dairy housing systems and to assess possibilities for reduction, based upon the analysis of processes and factors involved in the production and volatilization of ammonia. Mass balance methods for the determination of air exchange rates for naturally ventilated dairy cow buildings that are based upon natural or introduced tracers may have good potential for application in emission studies. Differences occur in housing systems, floor types and manure collection and manure storage systems. Ammonia emission levels for cubicle (loose) houses are higher (20-45 g/day/cow) than for tie stalls (5-27 g/day/cow), and variation in emissions by housing type is large. Integration of knowledge of ammonia emission related processes and factors will support a more detailed analysis of differences and variation, and will allow optimization of possibilities for emission reduction. Substantial emission reductions of up to 50% for cubicle houses with slatted floors can be achieved through each of the following measures: flushing of floors with water or diluted formaldehyde, optimised feeding strategies, and slurry acidification. Highest reductions are possible through V-shaped, solid floors (52%) as a single measure, or in combination with flushing with water (65%) or diluted formaldehyde (80%). Providing that drawbacks are solved, nationwide introduction of one or more these measures will lead to a maximal reduction of the NH3 emission in the Netherlands to 18 kt per year.


Author(s):  
A. Ordóñez ◽  
C. Matthew ◽  
R.D. Miller ◽  
T. Parkinson ◽  
C.W. Holmes ◽  
...  

This paper reports a field experiment and a farm survey, which aimed to find out if there is evidence that elevated herbage crude protein (CP):sugar levels have negative effects on dairy cow performance. Differences in herbage CP levels were induced by using nitrogen (+N) or withholding (-N) applied as fertiliser urea for two groups of 20 dairy cows in early lactation (August to November 2003). Cows fed urea-fertilised herbage had elevated milk urea levels (-N = 5.4 mmol/l, +N = 8.3 mmol/l, P


Sign in / Sign up

Export Citation Format

Share Document