scholarly journals Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes

2010 ◽  
Vol 93 (10) ◽  
pp. 4506-4517 ◽  
Author(s):  
S.L. Beckman ◽  
J. Zulewska ◽  
M. Newbold ◽  
D.M. Barbano
Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 656
Author(s):  
Chenchaiah Marella ◽  
Venkateswarlu Sunkesula ◽  
Ahmed R. A. Hammam ◽  
Anil Kommineni ◽  
Lloyd E. Metzger

A systematic selection of different transmembrane pressures (TMP) and levels of diafiltration (DF) was studied to optimize these critical process parameters during the manufacturing of micellar casein concentrate (MCC) using spiral-wound polymeric membrane filtration. Three TMPs (34.5, 62.1, and 103.4 kPa) and four DF levels (0, 70, 100, and 150%) were applied in the study. The effect of the TMP and DF level on flux rates, serum protein (SP) removal, the casein-to-total-protein ratio, the casein-to-true-protein ratio, and the rejection of casein and SP were evaluated. At all transmembrane pressures, the overall flux increased with increases in the DF level. The impact of DF on the overall flux was more pronounced at lower pressures than at higher pressures. With controlled DF, the instantaneous flux was maintained within 80% of the initial flux for the entire process run. The combination of 34.5 kPa and a DF level of 150% resulted in 81.45% SP removal, and a casein-to-true-protein ratio of 0.96. SP removal data from the lab-scale experiments were fitted into a mathematical model using DF levels and the square of TMPs as factors. The model developed in this study could predict SP removal within 90–95% of actual SP removal achieved from the pilot plant experiments.


2020 ◽  
Vol 605 ◽  
pp. 118110
Author(s):  
Martin Hartinger ◽  
Simon Schiffer ◽  
Hans-Jürgen Heidebrecht ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Author(s):  
Chenchaiah Marella ◽  
Venkateswarlu Sunkesula ◽  
Ahmed R. A. Hammam ◽  
Anil Kommineni ◽  
and Lloyd E. Metzger

Micellar Casein Concentrate (MCC) is manufactured from microfiltration (MF) of skim milk utilizing ceramic or polymeric membrane filtration. While ceramic filtration has higher efficiency, use of polymeric is cost effective and the process is familiar to several US dairy processors. The aim of the present study was to develop an optimized membrane filtration process to produce MCC using spiral wound polymeric membrane filtration (SW MF) system by systematic selection of transmembrane pressure (TMP) and level of diafiltration (DF). Using skim milk as feed material, preliminary lab-scale MF experiments were conducted using 0.5 µm polyvinylidene fluoride (PVDF) membrane. Three TMP (34.5, 62.1, and 103.4 kPa) and three levels of DF (70, 100, and 150%) along with a process without DF as control were used in the study. Effect of TMP and effectiveness of DF on flux rates, SP removal, casein to total protein (CN/TKN) ratio, casein to true protein (CN/TP) ratio, rejection of casein (rej CN) and SP (rej SP) were evaluated. At all TMP values used in the study, the overall flux (O Flux) increased with the level of DF. Highest O Flux of 30.77 liter per meter square per hour (LMH) was obtained with 34.5 kPa pressure and 150% DF. The impact of DF was more pronounced at lower pressures than at the higher pressures used in the study. With controlled DF, instantaneous flux was maintained within 80% of initial flux for the entire process run. For all the experiments, casein has a rejection of 0.97 to 1.0, while serum protein has the lowest rejection of 0.10 at 34.5 kPa pressure and 150% DF level. Use of 34.5 kPa and DF level of 150 % contributed to 81.45% SP removal, and casein to true protein ratio of 0.96. SP removal data from the lab-scale experiments were fitted into a mathematical model using DF and square of TMP as factors. The model predicts SP removal within 90-95% of actual SP removal got from the pilot plant experiments.


2017 ◽  
Vol 100 (11) ◽  
pp. 8838-8848 ◽  
Author(s):  
D. Mercier-Bouchard ◽  
S. Benoit ◽  
A. Doyen ◽  
M. Britten ◽  
Y. Pouliot

Foods ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 180 ◽  
Author(s):  
Martin Hartinger ◽  
Hans-Jürgen Heidebrecht ◽  
Simon Schiffer ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Protein fractionation by means of microfiltration (MF) is significantly affected by fouling, especially when spiral-wound membranes (SWMs) are used. We investigated the influence of the mode of transmembrane pressure (ΔpTM) increase to target level and the deposit layer pressure history on the filtration performance during skim milk MF at temperatures of 10 °C and 50 °C. Two filtration protocols were established: No. 1: ΔpTM was set directly to various target values. No. 2: Starting from a low ΔpTM, we increased and subsequently decreased ΔpTM stepwise. The comparison of both protocols tested the effect of the mode of ΔpTM increase to target level. The latter protocol alone tested the effect of the deposit layer history with regard to the ΔpTM. As expected, flux and protein permeation were both found to be functions of the ΔpTM. Further, both measures were independent of the filtration protocol as long as ΔpTM was held at a constant level or, as part of protocol No. 2, ΔpTM was increased. Thus, we can state that the mode of ΔpTM increase to target level does not affect filtration performance in SWM. We found that after completion of a full cycle of stepping ΔpTM up from 0.5 bar to 3.0 bar and back down, flux and deposit layer resistance were not affected by the deposit layer history at 10 °C, but they were at 50 °C. Protein permeation, however, was lower for both 10 °C and 50 °C, when the ΔpTM cycle was completed. The processing history had a significant impact on filtration performance due to remaining structural compression effects in the deposited layer, which occur most notably at higher temperatures. Furthermore, temperatures of 50 °C lead to deposit layer aging, which is probably due to an enhanced crosslinking of particles in the deposit layer. Apart from that, we could show that fouling resistance does not directly correlate with protein permeation during skim milk MF using SWM.


Sign in / Sign up

Export Citation Format

Share Document