scholarly journals Effect of maternal nutrition and days of gestation on pituitary gland and gonadal gene expression in cattle

2016 ◽  
Vol 99 (4) ◽  
pp. 3056-3071 ◽  
Author(s):  
M.M.D.C.A. Weller ◽  
M.R.S. Fortes ◽  
M.I. Marcondes ◽  
P.P. Rotta ◽  
T.R.S. Gionbeli ◽  
...  
Reproduction ◽  
2002 ◽  
pp. 769-777 ◽  
Author(s):  
P Da Silva ◽  
RP Aitken ◽  
SM Rhind ◽  
PA Racey ◽  
JM Wallace

The influence of maternal nutrition during pregnancy on anterior pituitary gonadotrophin gene expression and ovarian development in sheep fetuses during late gestation was investigated. Embryos recovered from superovulated adult ewes that had been inseminated by a single sire were transferred, singly, into the uteri of adolescent recipients. After embryo transfer, adolescent ewes were offered a high or moderate amount of a complete diet. Pregnancies were terminated at day 131 +/- 0.6 of gestation and the fetal brain, anterior pituitary gland and gonads were collected. Gonadotrophin gene expression (LHbeta and FSHbeta subunits) in the fetal pituitary gland was examined using in situ hybridization. Ovarian follicular development was quantified in haematoxylin- and eosin-stained ovarian sections embedded in paraffin wax. Six dams that were offered a high nutrient intake carried normal-sized fetuses (weight within +/- 2 SD of mean weight for control fetuses from dams fed a moderate level of complete diet) and 13 dams carried growth-restricted fetuses (weight +/- 2 SD of mean weight for control fetuses from dams fed a moderate level of complete diet). Mean placental masses in these groups were 354 +/- 24.5 and 230 +/- 21.1 g, respectively, compared with 442 +/- 54.3 g in the dams that were offered a moderate nutrient intake (n = 6). Growth-restricted fetuses from dams offered a high nutrient intake showed higher pituitary LHbeta mRNA expression (P < 0.05) than normal-sized fetuses from dams offered a moderate nutrient intake (252 +/- 21.6 and 172 +/- 23.6 nCi g(-1), respectively). FSHbeta mRNA expression was not influenced by growth status. Fewer follicles (primarily in the resting pool) were observed in the ovaries of both growth-restricted (P < 0.002) and normal-sized fetuses from dams offered a high nutrient intake (P < 0.01) compared with normal-sized fetuses from dams offered a moderate nutrient intake. Irrespective of nutritional treatment, the total number of follicles was positively associated with placental mass (P < 0.01). Thus, a high maternal nutrient intake during adolescent pregnancy had a negative influence on ovarian follicular development in fetuses as determined during late gestation.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e90335 ◽  
Author(s):  
Matthew V. Cannon ◽  
David A. Buchner ◽  
James Hester ◽  
Hadley Miller ◽  
Ephraim Sehayek ◽  
...  

2019 ◽  
Vol 4 (4) ◽  
pp. 137-142
Author(s):  
Vahid Azizi ◽  
Shahrbanoo Oryan ◽  
Homayuon Khazali ◽  
Abdolkarim Hosseini

Introduction: The neuropeptide Y (NPY) in the neural circuits of the hypothalamus has a stimulating effect on reproductive activities in mammals. Kisspeptin (KiSS1) is a quintessential neurotransmitter in the reproductive axis which directly stimulates gonadotropin-releasing hormone neurons in the hypothalamus. The distribution of KiSS1 expressing cells in the pituitary was described previously. Despite earlier reports showing the KiSS1 receptor, G-protein coupled receptor 54 (GPR54) expression in the pituitary, the potential physiological roles of kisspeptin at this gland have remained obscure. Accordingly, this study investigated the role of NPY on the relative expression of Kiss1 and Gpr54 genes in the pituitary gland in male Wistar rats. Methods: In general, 20 male Wistar rats weighing 200-250 g in 4 groups (5 in each group) received saline, NPY (2.3 nM), BIBP3226 (NPY receptor antagonist, 7.8 nM), and NPY+ BIBP3226. Then, they received the simultaneous injection of these molecules through the third ventricle of the brain. Finally, the relative mean expressions of Kiss1 and Gpr54 genes in the anterior pituitary were quantitatively analyzed by the real-time polymerase chain reaction. Results: The central injection of NPY increased the relative mean expressions of Kiss1 and Gpr54 genes in the pituitary gland compared to the control group although the injection of BIBP3226 eradicated these effects. However, the gene expression of Gpr54 in the rats receiving NPY coupled with BIBP3226 in hypophysis in comparison to the group receiving only NPY demonstrated a significant reduction (P<0.05). Conclusion: Overall, the central injection of NPY stimulated the gene expression of Kiss1 and Gpr54 in the pituitary gland.


2003 ◽  
Vol 81 (4) ◽  
pp. 371-384 ◽  
Author(s):  
S Harvey ◽  
M Kakebeeke ◽  
A E Murphy ◽  
E J Sanders

Growth hormone (GH) is primarily produced in the pituitary gland, although GH gene expression also occurs in the central and autonomic nervous systems. GH-immunoreactive proteins are abundant in the brain, spinal cord, and peripheral nerves. The appearance of GH in these tissues occurs prior to the ontogenic differentiation of the pituitary gland and prior to the presence of GH in systemic circulation. Neural GH is also present in neonates, juveniles, and adults and is independent of changes in pituitary GH secretion. Neural GH is therefore likely to have local roles in neural development or neural function, especially as GH receptors (GHRs) are widespread in the nervous system. In recent studies, GH mRNA and GH immunoreactive proteins have been identified in the neural retina of embryonic chicks. GH immunoreactivity is present in the optic cup of chick embryos at embryonic day (ED) 3 of the 21-d incubation period. It is widespread in the neural retina by ED 7 but also present in the nonpigmented retina, choroid, sclera, and cornea. This immunoreactivity is associated with proteins in the neural retina comparable in size with those in the adult pituitary gland, although it is primarily associated with 15–16 kDa moieties rather than with the full-length molecule of approximately 22 kDa. These small GH moieties may reflect proteolytic fragments of "monomer" GH and (or) the presence of different GH gene transcripts, since full-length and truncated GH cDNAs are present in retinal tissue extracts. The GH immunoreactivity in the retina persists throughout embryonic development but is not present in juvenile birds (after 6 weeks of age). This immunoreactivity is also associated with the presence of GH receptor (GHR) immunoreactivity and GHR mRNA in ocular tissues of chick embryos. The retina is thus an extrapituitary site of GH gene expression during early development and is probably an autocrine or paracrine site of GH action. The marked ontogenic pattern of GH immunoreactivity in the retina suggests hitherto unsuspected roles for GH in neurogenesis or ocular development.Key words: growth hormone, growth hormone receptor, nervous system, retina, autocrine, paracrine.


1993 ◽  
Vol 5 (5) ◽  
pp. 553-556 ◽  
Author(s):  
Pablo-Manuel Dobado-Berrios ◽  
Songuyn Li ◽  
Ester Garcia Yebenes ◽  
Georges Pelletier

2011 ◽  
Vol 23 (6) ◽  
pp. 780 ◽  
Author(s):  
Magdalena Ciechanowska ◽  
Magdalena Łapot ◽  
Tadeusz Malewski ◽  
Krystyna Mateusiak ◽  
Tomasz Misztal ◽  
...  

There is no information in the literature regarding the effect of corticotropin-releasing hormone (CRH) on genes encoding gonadotrophin-releasing hormone (GnRH) and the GnRH receptor (GnRHR) in the hypothalamus or on GnRHR gene expression in the pituitary gland in vivo. Thus, the aim of the present study was to investigate, in follicular phase ewes, the effects of prolonged, intermittent infusion of small doses of CRH or its antagonist (α-helical CRH 9-41; CRH-A) into the third cerebral ventricle on GnRH mRNA and GnRHR mRNA levels in the hypothalamo–pituitary unit and on LH secretion. Stimulation or inhibition of CRH receptors significantly decreased or increased GnRH gene expression in the hypothalamus, respectively, and led to different responses in GnRHR gene expression in discrete hypothalamic areas. For example, CRH increased GnRHR gene expression in the preoptic area, but decreased it in the hypothalamus/stalk median eminence and in the anterior pituitary gland. In addition, CRH decreased LH secretion. Blockade of CRH receptors had the opposite effect on GnRHR gene expression. The results suggest that activation of CRH receptors in the hypothalamus of follicular phase ewes can modulate the biosynthesis and release of GnRH through complex changes in the expression of GnRH and GnRHR genes in the hypothalamo–anterior pituitary unit.


Sign in / Sign up

Export Citation Format

Share Document